SDA*: A Simple and Unifying Solution to Recent Bioinformatic Challenges for Conservation Genetics

Recently, several algorithms have been proposed to tackle different conservation questions under phylogenetic diversity. Such questions are variants of the more general problem of budgeted reserve selection under split diversity, an NP-hard problem. Here, we present a novel framework, Split Diversity Algorithm* (SDA*), to unify all these attempts. More specifically, SDA* transforms the budgeted reserve selection problem into a binary linear programming(BLP), that can be solved by available linear optimization techniques. SDA* guarantees to find optimal solutions in reasonable time.

[1]  Paul H. Williams,et al.  What to protect?—Systematics and the agony of choice , 1991 .

[2]  Christian A. Vossler,et al.  A comparison of taxonomic distinctness versus richness as criteria for setting conservation priorities for North American birds , 2001 .

[3]  A. Dress,et al.  Split decomposition: a new and useful approach to phylogenetic analysis of distance data. , 1992, Molecular phylogenetics and evolution.

[4]  Arndt von Haeseler,et al.  Budgeted Phylogenetic Diversity on Circular Split Systems , 2009, IEEE ACM Trans. Comput. Biol. Bioinform..

[5]  Robert M. May,et al.  Taxonomy as destiny , 1990, Nature.

[6]  John N. Tsitsiklis,et al.  Introduction to linear optimization , 1997, Athena scientific optimization and computation series.

[7]  Kevin J. Gaston,et al.  Phylogeny and Conservation: Integrating phylogenetic diversity in the selection of priority areas for conservation: does it make a difference? , 2005 .

[8]  Nick Goldman,et al.  Resource-aware taxon selection for maximizing phylogenetic diversity. , 2007, Systematic biology.

[9]  A. Eyre-Walker Fundamentals of Molecular Evolution (2nd edn) , 2000, Heredity.

[10]  Volker Loeschcke,et al.  The optimization of biodiversity conservation , 1995 .

[11]  R. Crozier Preserving the Information Content of Species: Genetic Diversity, Phylogeny, and Conservation Worth , 1997 .

[12]  Les G. Underhill,et al.  Optimal and suboptimal reserve selection algorithms , 1994 .

[13]  Kevin J. Gaston,et al.  Maximising phylogenetic diversity in the selection of networks of conservation areas , 2002 .

[14]  R. Crozier,et al.  Genetic distances and the setting of conservation priorities , 1994 .

[15]  R. Crozier,et al.  Towards complete biodiversity assessment: an evaluation of the subterranean bacterial communities in the Oklo region of the sole surviving natural nuclear reactor , 1999 .

[16]  Bui Quang Minh,et al.  Taxon Selection under Split Diversity. , 2009, Systematic biology.

[17]  Ross H. Crozier,et al.  Genetic diversity and the agony of choice , 1992 .

[18]  K. Gaston,et al.  Biodiversity: An Introduction , 1998 .

[19]  Mike Steel,et al.  Phylogenetic diversity and the greedy algorithm. , 2005, Systematic biology.

[20]  Nick Goldman,et al.  Species Choice for Comparative Genomics: Being Greedy Works , 2005, PLoS genetics.

[21]  F. Delsuc,et al.  Phylogenomics and the reconstruction of the tree of life , 2005, Nature Reviews Genetics.

[22]  J. Avise Three ambitious (and rather unorthodox) assignments for the field of biodiversity genetics , 2008, Proceedings of the National Academy of Sciences.

[23]  Bui Quang Minh,et al.  Phylogenetic diversity within seconds. , 2006, Systematic biology.

[24]  Charles Semple,et al.  Optimizing phylogenetic diversity across two trees , 2009, Appl. Math. Lett..

[25]  Richard L. Church,et al.  Reserve selection as a maximal covering location problem , 1996 .

[26]  Dan Graur,et al.  Fundamentals of Molecular Evolution, 2nd Edition , 2000 .

[27]  V. Moulton,et al.  Computing Phylogenetic Diversity for Split Systems , 2008, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[28]  V. Loeschcke,et al.  Modelling the optimal conservation of interacting species , 2000 .

[29]  Richard Grenyer,et al.  Preserving the evolutionary potential of floras in biodiversity hotspots , 2007, Nature.

[30]  D. Faith Conservation evaluation and phylogenetic diversity , 1992 .

[31]  Charles Semple,et al.  Optimizing phylogenetic diversity under constraints. , 2007, Journal of theoretical biology.

[32]  M. Nei Molecular Evolutionary Genetics , 1987 .

[33]  Jamie B. Kirkpatrick,et al.  An iterative method for establishing priorities for the selection of nature reserves: An example from Tasmania , 1983 .

[34]  Charles Semple,et al.  Nature Reserve Selection Problem: A Tight Approximation Algorithm , 2008, IEEE ACM Trans. Comput. Biol. Bioinform..

[35]  Faisal Ababneh,et al.  Phylogenetic model evaluation. , 2008, Methods in molecular biology.

[36]  吉田 仁美,et al.  Strength in Diversity , 2019, Bridging Communities through Socially Engaged Art.

[37]  C. Humphries,et al.  MEASURING BIODIVERSITY VALUE FOR CONSERVATION , 1995 .

[38]  M. Weitzman The Noah's Ark Problem , 1998 .

[39]  Thomas H. Cormen,et al.  Introduction to algorithms [2nd ed.] , 2001 .