Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water

[1]  William R. Dichtel,et al.  Seeded growth of single-crystal two-dimensional covalent organic frameworks , 2018, Science.

[2]  Tsuyoshi Takata,et al.  A Particulate Photocatalyst Water-Splitting Panel for Large-Scale Solar Hydrogen Generation , 2018 .

[3]  R. Schomäcker,et al.  Diacetylene Functionalized Covalent Organic Framework (COF) for Photocatalytic Hydrogen Generation. , 2017, Journal of the American Chemical Society.

[4]  T. Bein,et al.  Oriented Films of Conjugated 2D Covalent Organic Frameworks as Photocathodes for Water Splitting , 2017, Journal of the American Chemical Society.

[5]  M. Antonietti,et al.  Optimizing Optical Absorption, Exciton Dissociation, and Charge Transfer of a Polymeric Carbon Nitride with Ultrahigh Solar Hydrogen Production Activity. , 2017, Angewandte Chemie.

[6]  C. Ochsenfeld,et al.  Single-Site Photocatalytic H2 Evolution from Covalent Organic Frameworks with Molecular Cobaloxime Co-Catalysts , 2017, Journal of the American Chemical Society.

[7]  A. Cooper,et al.  Covalent Triazine Frameworks via a Low‐Temperature Polycondensation Approach , 2017, Angewandte Chemie.

[8]  Reiner Sebastian Sprick,et al.  Structure-property relationships for covalent triazine-based frameworks: The effect of spacer length on photocatalytic hydrogen evolution from water , 2017 .

[9]  Z. Zou,et al.  A (001) dominated conjugated polymer with high-performance of hydrogen evolution under solar light irradiation. , 2017, Chemical communications.

[10]  C. Ochsenfeld,et al.  Structure-property-activity relationships in a pyridine containing azine-linked covalent organic framework for photocatalytic hydrogen evolution. , 2017, Faraday discussions.

[11]  Alexander J. Cowan,et al.  A Solution‐Processable Polymer Photocatalyst for Hydrogen Evolution from Water , 2017 .

[12]  Jinlong Yang,et al.  Conjugated Microporous Polymer Nanosheets for Overall Water Splitting Using Visible Light , 2017, Advanced materials.

[13]  K. Domen,et al.  Particulate photocatalysts for overall water splitting , 2017 .

[14]  Cody W. Schlenker,et al.  Ultrafast Spectroscopy Reveals Electron-Transfer Cascade That Improves Hydrogen Evolution with Carbon Nitride Photocatalysts. , 2017, Journal of the American Chemical Society.

[15]  O. Yaghi,et al.  The atom, the molecule, and the covalent organic framework , 2017, Science.

[16]  M. Zwijnenburg,et al.  Validating a Density Functional Theory Approach for Predicting the Redox Potentials Associated with Charge Carriers and Excitons in Polymeric Photocatalysts , 2017 .

[17]  Xinchen Wang,et al.  Conjugated Polymers: Catalysts for Photocatalytic Hydrogen Evolution. , 2016, Angewandte Chemie.

[18]  D. Jiang,et al.  Covalent organic frameworks: a materials platform for structural and functional designs , 2016, Nature Reviews Materials.

[19]  Reiner Sebastian Sprick,et al.  Extended conjugated microporous polymers for photocatalytic hydrogen evolution from water. , 2016, Chemical communications.

[20]  K. Landfester,et al.  Molecular Engineering of Conjugated Polybenzothiadiazoles for Enhanced Hydrogen Production by Photosynthesis. , 2016, Angewandte Chemie.

[21]  N. Zhang,et al.  Rational Design of Porous Conjugated Polymers and Roles of Residual Palladium for Photocatalytic Hydrogen Production. , 2016, Journal of the American Chemical Society.

[22]  I. Sharp,et al.  Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1. , 2016, Nature materials.

[23]  M. Zwijnenburg,et al.  Polymer Photocatalysts for Water Splitting: Insights from Computational Modeling , 2016 .

[24]  Xinchen Wang,et al.  Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents† †Electronic supplementary information (ESI) available: Characterization and experimental detail. See DOI: 10.1039/c5sc04572j , 2016, Chemical science.

[25]  R. van de Krol,et al.  Semiconducting materials for photoelectrochemical energy conversion , 2016, Nature Reviews Materials.

[26]  Katherine L. Orchard,et al.  Dye-sensitised semiconductors modified with molecular catalysts for light-driven H2 production. , 2016, Chemical Society reviews.

[27]  Reiner Sebastian Sprick,et al.  Visible‐Light‐Driven Hydrogen Evolution Using Planarized Conjugated Polymer Photocatalysts , 2015, Angewandte Chemie.

[28]  R. Banerjee,et al.  Pore surface engineering in porous, chemically stable covalent organic frameworks for water adsorption , 2015 .

[29]  R. Schomäcker,et al.  Hydrogen Evolution Reaction in a Large‐Scale Reactor using a Carbon Nitride Photocatalyst under Natural Sunlight Irradiation , 2015 .

[30]  Ling Wu,et al.  Covalent Triazine-Based Frameworks as Visible Light Photocatalysts for the Splitting of Water. , 2015, Macromolecular rapid communications.

[31]  C. Ochsenfeld,et al.  A tunable azine covalent organic framework platform for visible light-induced hydrogen generation , 2015, Nature Communications.

[32]  P. Yang,et al.  Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water , 2015, Science.

[33]  Andrew I. Cooper,et al.  Function-led design of new porous materials , 2015, Science.

[34]  Reiner Sebastian Sprick,et al.  Tunable organic photocatalysts for visible-light-driven hydrogen evolution. , 2015, Journal of the American Chemical Society.

[35]  R. Banerjee,et al.  A covalent organic framework-cadmium sulfide hybrid as a prototype photocatalyst for visible-light-driven hydrogen production. , 2014, Chemistry.

[36]  Wei Zhang,et al.  Reversible tuning of pore size and CO2 adsorption in azobenzene functionalized porous organic polymers , 2014 .

[37]  K. Domen,et al.  Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. , 2014, Chemical Society reviews.

[38]  C. Ziegler,et al.  Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution. , 2014, Journal of the American Chemical Society.

[39]  Aron Walsh,et al.  Electronic Chemical Potentials of Porous Metal–Organic Frameworks , 2014, Journal of the American Chemical Society.

[40]  B. Lotsch,et al.  A hydrazone-based covalent organic framework for photocatalytic hydrogen production , 2014, 1401.3656.

[41]  S. Haque,et al.  Determining the Exciton Diffusion Length in a Polyfluorene from Ultrafast Fluorescence Measurements of Polymer/Fullerene Blend Films , 2013 .

[42]  H. Uehara,et al.  Preparation and structure of a single Au atom on the TiO2(110) surface: control of the Au-metal oxide surface interaction. , 2013, Faraday discussions.

[43]  R. Banerjee,et al.  Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. , 2012, Journal of the American Chemical Society.

[44]  William R. Dichtel,et al.  Lattice expansion of highly oriented 2D phthalocyanine covalent organic framework films. , 2012, Angewandte Chemie.

[45]  J. F. Stoddart,et al.  Covalent Organic Frameworks with High Charge Carrier Mobility , 2011 .

[46]  Thomas S. Teets,et al.  Photocatalytic hydrogen production. , 2011, Chemical communications.

[47]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[48]  M. Antonietti,et al.  Photocatalytic hydrogen evolution through fully conjugated poly(azomethine) networks. , 2010, Chemical communications.

[49]  William R. Dichtel,et al.  Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. , 2010, Nature chemistry.

[50]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[51]  Giovanni Scalmani,et al.  Continuous surface charge polarizable continuum models of solvation. I. General formalism. , 2010, The Journal of chemical physics.

[52]  C. Cramer,et al.  Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. , 2009, The journal of physical chemistry. B.

[53]  I. Samuel,et al.  Exciton Diffusion Measurements in Poly(3‐hexylthiophene) , 2008 .

[54]  Michael O'Keeffe,et al.  Designed Synthesis of 3D Covalent Organic Frameworks , 2007, Science.

[55]  Jean-Luc Brédas,et al.  Charge transport in organic semiconductors. , 2007, Chemical reviews.

[56]  Tomoki Akita,et al.  All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system , 2006, Nature materials.

[57]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[58]  Michael O'Keeffe,et al.  Porous, Crystalline, Covalent Organic Frameworks , 2005, Science.

[59]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[60]  Gustavo E Scuseria,et al.  Efficient hybrid density functional calculations in solids: assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional. , 2004, The Journal of chemical physics.

[61]  Jessica E. Kroeze,et al.  Contactless Determination of the Photoconductivity Action Spectrum, Exciton Diffusion Length, and Charge Separation Efficiency in Polythiophene-Sensitized TiO2 Bilayers , 2003 .

[62]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[63]  K. Domen,et al.  A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3−/I− shuttle redox mediator , 2001 .

[64]  Benjamin T. Miller,et al.  A parallel implementation of the analytic nuclear gradient for time-dependent density functional theory within the Tamm–Dancoff approximation , 1999 .

[65]  Josef Salbeck,et al.  Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies , 1998, Nature.

[66]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[67]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[68]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[69]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[70]  O. Ishitani,et al.  Novel visible-light-driven photocatalyst: poly(p-phenylene)-catalyzed photoreductions of water, carbonyl compounds, and olefins , 1990 .

[71]  A. Fukushima,et al.  Surface studies on poly(vinyl alcohol)—poly(dimethylsiloxane) graft copolymers , 1986 .

[72]  Hyman D. Gesser,et al.  Porous titania glass as a photocatalyst for hydrogen production from water , 1981, Nature.

[73]  G. Somorjai,et al.  Photocatalytic hydrogen production from water on Pt-free SrTiO 3 in alkali hydroxide solutions , 1980 .

[74]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[75]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[76]  M. Antonietti,et al.  A metal-free polymeric photocatalyst for hydrogen production from water under visible light. , 2009, Nature materials.

[77]  K. Yoshino,et al.  Poly(p-phenylene)-catalysed photoreduction of water to hydrogen , 1985 .