Finite element approximation for 2nd order elliptic eigenvalue problems with nonlocal boundary or transition conditions
暂无分享,去创建一个
[1] Mark J. Ablowitz,et al. A Nonlinear Difference Scheme and Inverse Scattering , 1976 .
[2] Mark J. Ablowitz,et al. Symplectic methods for the nonlinear Schro¨dinger equation , 1994 .
[3] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[4] J. M. Sanz-Serna,et al. Methods for the numerical solution of the nonlinear Schroedinger equation , 1984 .
[5] T. Taha,et al. Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation , 1984 .
[6] Ben M. Herbst,et al. Numerical Experience with the Nonlinear Schrödinger Equation , 1985 .
[7] Yifa Tang,et al. Interaction of a dark soliton with a localized impurity , 1997 .
[8] H. Yoshida. Construction of higher order symplectic integrators , 1990 .
[9] A. Bensoussan,et al. Asymptotic analysis for periodic structures , 1979 .
[10] G. Lamb. Elements of soliton theory , 1980 .
[11] R. Dautray,et al. Analyse mathématique et calcul numérique pour les sciences et les techniques , 1984 .
[12] Yifa Tang,et al. Formal energy of a symplectic scheme for hamiltonian systems and its applications (I) , 1994 .
[13] Yifa Tang,et al. The symplecticity of multi-step methods , 1993 .
[14] John Ll Morris,et al. An investigation into the effect of product approximation in the numerical solution of the cubic nonlinear Schro¨dinger equation , 1988 .
[15] R. Ruth. A Can0nical Integrati0n Technique , 1983, IEEE Transactions on Nuclear Science.
[16] M. Vanmaele,et al. An operator method for a numerical quadrature finite element approximation for a class of second-order elliptic eigenvalue problems in composite structures , 1995 .
[17] J. G. Verwer,et al. Conerservative and Nonconservative Schemes for the Solution of the Nonlinear Schrödinger Equation , 1986 .
[18] A. Ženíšek,et al. Nonlinear elliptic and evolution problems and their finite element approximations , 1990 .
[19] Georgios Akrivis,et al. Finite difference discretization of the cubic Schrödinger equation , 1993 .
[20] J. Marsden,et al. Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators , 1988 .
[21] Víctor M. Pérez-García,et al. Symplectic methods for the nonlinear Schrödinger equation , 1996 .
[22] J. Gibbon,et al. Solitons and Nonlinear Wave Equations , 1982 .
[23] Akira Hasegawa,et al. Optical solitons in fibers , 1993, International Commission for Optics.
[24] Michèle Vanmaele,et al. Some results in lumped mass finite-element approximation of eigenvalue problems using numerical quadrature formulas , 1992 .
[25] J. M. Sanz-Serna,et al. Runge-kutta schemes for Hamiltonian systems , 1988 .
[26] External finite-element approximations of eigenfunctions in the case of multiple eigenvalues , 1994 .
[27] Ge Zhong,et al. On the approximation of linear Hamiltonian systems , 1988 .
[28] C. Scovel. Symplectic Numerical Integration of Hamiltonian Systems , 1991 .
[29] Z. Fei,et al. Numerical simulation of nonlinear Schro¨dinger systems: a new conservative scheme , 1995 .
[30] Mark J. Ablowitz,et al. Solitons and the Inverse Scattering Transform , 1981 .
[31] J. M. Thomas,et al. Introduction à l'analyse numérique des équations aux dérivées partielles , 1983 .
[32] V. Vekslerchik. An O(3,1) nonlinear sigma -model and the Ablowitz-Ladik hierarchy , 1994 .
[33] John W. Miles,et al. An Envelope Soliton Problem , 1981 .
[34] Curtis R. Menyuk,et al. Some properties of the discrete Hamiltonian method , 1984 .
[35] L. Vázquez,et al. Nonlinear Random Waves , 1994 .
[36] Michel C. Delfour,et al. Finite-difference solutions of a non-linear Schrödinger equation , 1981 .
[37] C. Scovel,et al. Symplectic integration of Hamiltonian systems , 1990 .