Finite element approximation for 2nd order elliptic eigenvalue problems with nonlocal boundary or transition conditions

In this paper, we use two symplectic schemes to simulate the Ablowitz-Ladik model associated to the cubic nonlinear Schrodinger equation and we compare them with nonsymplectic methods.

[1]  Mark J. Ablowitz,et al.  A Nonlinear Difference Scheme and Inverse Scattering , 1976 .

[2]  Mark J. Ablowitz,et al.  Symplectic methods for the nonlinear Schro¨dinger equation , 1994 .

[3]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[4]  J. M. Sanz-Serna,et al.  Methods for the numerical solution of the nonlinear Schroedinger equation , 1984 .

[5]  T. Taha,et al.  Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation , 1984 .

[6]  Ben M. Herbst,et al.  Numerical Experience with the Nonlinear Schrödinger Equation , 1985 .

[7]  Yifa Tang,et al.  Interaction of a dark soliton with a localized impurity , 1997 .

[8]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[9]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[10]  G. Lamb Elements of soliton theory , 1980 .

[11]  R. Dautray,et al.  Analyse mathématique et calcul numérique pour les sciences et les techniques , 1984 .

[12]  Yifa Tang,et al.  Formal energy of a symplectic scheme for hamiltonian systems and its applications (I) , 1994 .

[13]  Yifa Tang,et al.  The symplecticity of multi-step methods , 1993 .

[14]  John Ll Morris,et al.  An investigation into the effect of product approximation in the numerical solution of the cubic nonlinear Schro¨dinger equation , 1988 .

[15]  R. Ruth A Can0nical Integrati0n Technique , 1983, IEEE Transactions on Nuclear Science.

[16]  M. Vanmaele,et al.  An operator method for a numerical quadrature finite element approximation for a class of second-order elliptic eigenvalue problems in composite structures , 1995 .

[17]  J. G. Verwer,et al.  Conerservative and Nonconservative Schemes for the Solution of the Nonlinear Schrödinger Equation , 1986 .

[18]  A. Ženíšek,et al.  Nonlinear elliptic and evolution problems and their finite element approximations , 1990 .

[19]  Georgios Akrivis,et al.  Finite difference discretization of the cubic Schrödinger equation , 1993 .

[20]  J. Marsden,et al.  Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators , 1988 .

[21]  Víctor M. Pérez-García,et al.  Symplectic methods for the nonlinear Schrödinger equation , 1996 .

[22]  J. Gibbon,et al.  Solitons and Nonlinear Wave Equations , 1982 .

[23]  Akira Hasegawa,et al.  Optical solitons in fibers , 1993, International Commission for Optics.

[24]  Michèle Vanmaele,et al.  Some results in lumped mass finite-element approximation of eigenvalue problems using numerical quadrature formulas , 1992 .

[25]  J. M. Sanz-Serna,et al.  Runge-kutta schemes for Hamiltonian systems , 1988 .

[26]  External finite-element approximations of eigenfunctions in the case of multiple eigenvalues , 1994 .

[27]  Ge Zhong,et al.  On the approximation of linear Hamiltonian systems , 1988 .

[28]  C. Scovel Symplectic Numerical Integration of Hamiltonian Systems , 1991 .

[29]  Z. Fei,et al.  Numerical simulation of nonlinear Schro¨dinger systems: a new conservative scheme , 1995 .

[30]  Mark J. Ablowitz,et al.  Solitons and the Inverse Scattering Transform , 1981 .

[31]  J. M. Thomas,et al.  Introduction à l'analyse numérique des équations aux dérivées partielles , 1983 .

[32]  V. Vekslerchik An O(3,1) nonlinear sigma -model and the Ablowitz-Ladik hierarchy , 1994 .

[33]  John W. Miles,et al.  An Envelope Soliton Problem , 1981 .

[34]  Curtis R. Menyuk,et al.  Some properties of the discrete Hamiltonian method , 1984 .

[35]  L. Vázquez,et al.  Nonlinear Random Waves , 1994 .

[36]  Michel C. Delfour,et al.  Finite-difference solutions of a non-linear Schrödinger equation , 1981 .

[37]  C. Scovel,et al.  Symplectic integration of Hamiltonian systems , 1990 .