Generalized Hamiltonian dynamics
暂无分享,去创建一个
Taking the Liouville theorem as a guiding principle, we propose a possible generalization of classical Hamiltonian dynamics to a three-dimensional phase space. The equation of motion involves two Hamiltonians and three canonical variables. The fact that the Euler equations for a rotator can be cast into this form suggests the potential usefulness of the formalism. In this article we study its general properties and the problem of quantization.