Dissipative preparation of generalized Bell states

A scheme is presented for the dissipative preparation of generalized Bell states of two qubits, within the context of cavity QED. In the suggested protocol the dissipative processes of spontaneous emission and cavity loss are no longer undesirable, but essential to the required dynamics. Extremely long-lived target states are achieved, with fidelities of near unity, utilizing cooperativities corresponding to currently available optical cavities. Furthermore, the suggested protocol exhibits excellent scaling of relevant characteristics, with respect to cooperativity, such that improved results may be obtained as the development of experimental capabilities continues.

[1]  Hood,et al.  Measurement of conditional phase shifts for quantum logic. , 1995, Physical review letters.

[2]  J. Ignacio Cirac,et al.  Dissipatively driven entanglement of two macroscopic atomic ensembles , 2010, 1007.2209.

[3]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[4]  Fu-Li Li,et al.  Dissipative preparation of entangled states between two spatially separated nitrogen-vacancy centers , 2011, 1110.6718.

[5]  Germany,et al.  Quantum states and phases in driven open quantum systems with cold atoms , 2008, 0803.1482.

[6]  A. Sørensen,et al.  Driving two atoms in an optical cavity into an entangled steady state using engineered decay , 2011, 1110.1024.

[7]  S. G. Schirmer,et al.  Stabilizing open quantum systems by Markovian reservoir engineering , 2009, 0909.1596.

[8]  F. Petruccione,et al.  Open Quantum Random Walks , 2012, 1402.3253.

[9]  A S Sørensen,et al.  Dissipative preparation of entanglement in optical cavities. , 2010, Physical review letters.

[10]  T. Monz,et al.  An open-system quantum simulator with trapped ions , 2011, Nature.

[11]  E. Polzik,et al.  Toward quantum state tomography of a single polariton state of an atomic ensemble , 2012, 1208.1415.

[12]  Andrew M. Childs,et al.  Quantum algorithms for algebraic problems , 2008, 0812.0380.

[13]  Christine A Muschik,et al.  Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. , 2010, Physical review letters.

[14]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[15]  Almut Beige,et al.  Cooling atoms into entangled states , 2009, 0903.2796.

[16]  Marcus Huber,et al.  Detection of high-dimensional genuine multipartite entanglement of mixed states. , 2009, Physical review letters.

[17]  P. Zoller,et al.  Preparation of entangled states by quantum Markov processes , 2008, 0803.1463.

[18]  L. H. Pedersen,et al.  Adiabatic elimination in a lambda system , 2006, quant-ph/0610056.

[19]  Osamu Hirota,et al.  "Quantum Communication, Computing, and Measurement" , 2012 .

[20]  F. Petruccione,et al.  Open Quantum Walks on Graphs , 2012, 1401.3305.

[21]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[22]  A. P. Vinogradov,et al.  PT-symmetry in optics , 2014 .

[23]  A. D. Boozer,et al.  Trapped atoms in cavity QED: coupling quantized light and matter , 2005 .

[24]  F. Verstraete,et al.  Quantum computation and quantum-state engineering driven by dissipation , 2009 .

[25]  J. Raimond,et al.  Simple cavity-QED two-bit universal quantum logic gate: The principle and expected performances. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[26]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[27]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[28]  Francesco Petruccione,et al.  Efficiency of open quantum walk implementation of dissipative quantum computing algorithms , 2012, Quantum Inf. Process..

[29]  S. S. Ivanov,et al.  Cooling atom-cavity systems into entangled states , 2011, 1105.5151.

[30]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[31]  M. James Quantum Markov Chain Mixing and Dissipative Engineering , 2015 .

[32]  A. Boozer,et al.  Raman Transitions in Cavity QED , 2005 .

[33]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[34]  Shi-Biao Zheng,et al.  Steady-State Entanglement for Distant Atoms by Dissipation in Coupled Cavities , 2011 .

[35]  B. Lanyon,et al.  Universal Digital Quantum Simulation with Trapped Ions , 2011, Science.

[36]  Florentin Reiter,et al.  Effective operator formalism for open quantum systems , 2011, 1112.2806.

[37]  Xin-Yu Chen,et al.  Engineering W-type steady states for three atoms via dissipation in an optical cavity , 2012, 1202.0345.

[38]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .