Fast Fourier transform algorithms for linear estimation, smoothing and Riccati equations

In the past two decades since the advent of Kalman's recursive filter, numerous algorithms for linear estimation have emerged. Most of these algorithms are recursive and rely on solving a Riccati equation or equivalent recursive equations. It will be shown how some of the classical problems such as linear smoothing, Riccati equations, boundary value problems, and recursive block filtering problems can be solved exactly by some new nonrecursive algorithms which are based on the fast Fourier transform (FFT). In the context of modern digital signal processing these algorithms have a highly parallel structure and are well suited for VLSI implementations.

[1]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[2]  On linear estimation via the fast Fourier transform , 1979, 1979 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[3]  D. C. Fraser,et al.  A new technique for the optimal smoothing of data , 1968 .

[4]  J. L. Hock,et al.  An exact recursion for the composite nearest‐neighbor degeneracy for a 2×N lattice space , 1984 .

[5]  Brian D. O. Anderson,et al.  New linear smoothing formulas , 1972 .

[6]  Gerald Bierman,et al.  Sequential square root filtering and smoothing of discrete linear systems , 1974, Autom..

[7]  A. G. Carlton LINEAR ESTIMATION IN STOCHASTIC PROCESSES , 1962 .

[8]  C. Burrus Block implementation of digital filters , 1971 .

[9]  A. Bryson,et al.  DISCRETE SQUARE ROOT SMOOTHING , 1972 .

[10]  Anil K Jain,et al.  A Class of FFT Based Algorithms for Linear Estimation. , 1981 .

[11]  J. Potter,et al.  STATISTICAL FILTERING OF SPACE NAVIGATION MEASUREMENTS , 1963 .

[12]  Demetrios G. Lainiotis,et al.  Estimation: A brief survey , 1974, Inf. Sci..

[13]  M. Morf,et al.  Some new algorithms for recursive estimation in constant, linear, discrete-time systems , 1974 .

[14]  C. Striebel,et al.  On the maximum likelihood estimates for linear dynamic systems , 1965 .

[15]  L. Ljung,et al.  Scattering theory and linear least squares estimation: Part II: Discrete-time problems , 1975, 1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes.

[16]  Y. Ho,et al.  A Bayesian approach to problems in stochastic estimation and control , 1964 .

[17]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[18]  Demetrios G. Lainiotis,et al.  Partitioned estimation algorithms, I: Nonlinear estimation , 1974, Inf. Sci..

[19]  T. Kailath,et al.  An innovations approach to least-squares estimation--Part II: Linear smoothing in additive white noise , 1968 .

[20]  David Q. Mayne,et al.  A solution of the smoothing problem for linear dynamic systems , 1966, Autom..

[21]  William F. Trench,et al.  Inversion of Toeplitz band matrices , 1974 .

[22]  A. Jain Fast inversion of banded Toeplitz matrices by circular decompositions , 1978 .

[23]  J. Meditch Orthogonal Projection and Discrete Optimal Linear Smoothing , 1967 .

[24]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[25]  N. Levinson The Wiener (Root Mean Square) Error Criterion in Filter Design and Prediction , 1946 .

[26]  Thomas Kailath,et al.  Some new algorithms for recursive estimation in constant linear systems , 1973, IEEE Trans. Inf. Theory.

[27]  Thomas Kailath,et al.  Square-root algorithms for parallel processing in optimal estimation, , 1979, Autom..

[28]  S. Mitra,et al.  Block implementation of recursive digital filters--New structures and properties , 1978 .

[29]  Thomas Kailath,et al.  A view of three decades of linear filtering theory , 1974, IEEE Trans. Inf. Theory.

[30]  H. Rauch Solutions to the linear smoothing problem , 1963 .

[31]  J. Meditch A survey of data smoothing for linear and nonlinear dynamic systems , 1973 .

[32]  S. Mcreynolds,et al.  Extension of square-root filtering to include process noise , 1969 .