Dynamical Tidal Response of Kerr Black Holes from Scattering Amplitudes

We match scattering amplitudes in point particle effective field theory (EFT) and general relativity to extract low frequency dynamical tidal responses of rotating (Kerr) black holes to all orders in spin. In the conservative sector, we study local worldline couplings that correspond to the time-derivative expansion of the black hole tidal response function. These are dynamical (frequency-dependent) generalizations of the static Love numbers. We identify and extract couplings of three types of subleading local worldline operators: the curvature time derivative terms, the spin - curvature time derivative couplings, and quadrupole - octupole mixing operators that arise due to the violation of spherical symmetry. The first two subleading couplings are non-zero and exhibit a classical renormalization group running; we explicitly present their scheme-independent beta functions. The conservative mixing terms, however, vanish as a consequence of vanishing static Love numbers. In the non-conservative sector, we match the dissipation numbers at next-to-leading and next-to-next-to leading orders in frequency. In passing, we identify terms in the general relativity absorption probabilities that originate from tails and short-scale logarithmic corrections to the lowest order dissipation contributions.

[1]  M. Ivanov,et al.  Vanishing of Black Hole Tidal Love Numbers from Scattering Amplitudes. , 2022, Physical review letters.

[2]  S. Dubovsky,et al.  Love symmetry , 2022, Journal of High Energy Physics.

[3]  Gregorio Carullo,et al.  Nonlinear Effects in Black Hole Ringdown. , 2022, Physical review letters.

[4]  Lawrence E. Kidder,et al.  Nonlinearities in Black Hole Ringdowns. , 2022, Physical review letters.

[5]  L. Hui,et al.  Generation and propagation of nonlinear quasinormal modes of a Schwarzschild black hole , 2022, Physical Review D.

[6]  J. Vines,et al.  Scattering of gravitational waves off spinning compact objects with an effective worldline theory , 2022, Physical Review D.

[7]  Walter D. Goldberger Effective field theories of gravity and compact binary dynamics: A Snowmass 2021 whitepaper , 2022, 2206.14249.

[8]  A. Buonanno,et al.  Snowmass White Paper: Gravitational Waves and Scattering Amplitudes , 2022, 2204.05194.

[9]  B. Modrekiladze Gravitational wave signals from finite size effects in spinning binary inspirals including parity violating constituents , 2022, Journal of High Energy Physics.

[10]  Rafael A. Porto,et al.  Gravitational radiation from inspiralling compact objects: Spin effects to the fourth post-Newtonian order , 2022, Physical Review D.

[11]  B. Whiting,et al.  Supergravity black holes, Love numbers, and harmonic coordinates , 2021, Physical Review D.

[12]  E. Poisson Tidally induced multipole moments of a nonrotating black hole vanish to all post-Newtonian orders , 2021, Physical Review D.

[13]  F. Pretorius,et al.  Projecting the likely importance of weak-interaction-driven bulk viscosity in neutron star mergers , 2021, Monthly Notices of the Royal Astronomical Society.

[14]  L. Hui,et al.  Ladder symmetries of black holes. Implications for love numbers and no-hair theorems , 2021, Journal of Cosmology and Astroparticle Physics.

[15]  Hang Yu,et al.  Detecting resonant tidal excitations of Rossby modes in coalescing neutron-star binaries with third-generation gravitational-wave detectors , 2021, Physical Review D.

[16]  T. Dietrich,et al.  Spin effects on neutron star fundamental-mode dynamical tides: Phenomenology and comparison to numerical simulations , 2021, Physical Review Research.

[17]  S. Dubovsky,et al.  Hidden Symmetry of Vanishing Love Numbers. , 2021, Physical review letters.

[18]  S. Dubovsky,et al.  On the vanishing of Love numbers for Kerr black holes , 2021, Journal of High Energy Physics.

[19]  I. Rothstein,et al.  Non-conservative effects on spinning black holes from world-line effective field theory , 2020, Journal of High Energy Physics.

[20]  E. Poisson Compact body in a tidal environment: New types of relativistic Love numbers, and a post-Newtonian operational definition for tidally induced multipole moments , 2020, 2012.10184.

[21]  Jung-Wook Kim,et al.  Quantum corrections to tidal Love number for Schwarzschild black holes , 2020, Physical Review D.

[22]  Pawan Kumar Gupta,et al.  Relativistic effective action of dynamical gravitomagnetic tides for slowly rotating neutron stars , 2020, 2011.03508.

[23]  M. Casals,et al.  Tidal Love numbers of Kerr black holes , 2020, 2010.15795.

[24]  H. Chia Tidal deformation and dissipation of rotating black holes , 2020, Physical Review D.

[25]  L. Hui,et al.  Static response and Love numbers of Schwarzschild black holes , 2020, Journal of Cosmology and Astroparticle Physics.

[26]  H.Zhang,et al.  Overview of KAGRA: Calibration, detector characterization, physical environmental monitors, and the geophysics interferometer , 2020, Progress of Theoretical and Experimental Physics.

[27]  E. Poisson Gravitomagnetic Love tensor of a slowly rotating body: Post-Newtonian theory , 2020, Physical Review D.

[28]  M. Casals,et al.  Spinning Black Holes Fall in Love. , 2020, Physical review letters.

[29]  I. Rothstein,et al.  Virtual Hawking Radiation. , 2020, Physical review letters.

[30]  A. Mazumdar,et al.  How does a dark compact object ringdown? , 2020, Physical Review D.

[31]  S. Dolan,et al.  Series reduction method for scattering of planar waves by Kerr black holes , 2020, 2004.10773.

[32]  E. Poisson Gravitomagnetic tidal resonance in neutron-star binary inspirals , 2020, Physical Review D.

[33]  J. Vines,et al.  Test black holes, scattering amplitudes, and perturbations of Kerr spacetime , 2019, Physical Review D.

[34]  B. A. Boom,et al.  GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs , 2018 .

[35]  M. Levi Effective field theories of post-Newtonian gravity: a comprehensive review , 2018, Reports on progress in physics. Physical Society.

[36]  J. Steinhoff,et al.  Gravitational waves from spinning binary black holes at the leading post-Newtonian orders at all orders in spin , 2017, Physical Review D.

[37]  A. Starobinsky Amplification of waves reflected from a rotating "black hole". , 2016 .

[38]  K. Chatziioannou,et al.  Improved next-to-leading order tidal heating and torquing of a Kerr black hole , 2016, 1608.02899.

[39]  A. Taracchini,et al.  Dynamical Tides in General Relativity: Effective Action and Effective-One-Body Hamiltonian , 2016, 1608.01907.

[40]  Rafael A. Porto The tune of love and the nature(ness) of spacetime , 2016, 1606.08895.

[41]  D. Reitze The Observation of Gravitational Waves from a Binary Black Hole Merger , 2016 .

[42]  Rafael A. Porto The Effective Field Theorist's Approach to Gravitational Dynamics , 2016, 1601.04914.

[43]  P. Landry,et al.  Dynamical response to a stationary tidal field , 2015, 1510.09170.

[44]  P. Landry,et al.  Tidal deformation of a slowly rotating material body: External metric , 2015, 1503.07366.

[45]  J. Steinhoff,et al.  Spinning gravitating objects in the effective field theory in the post-Newtonian scheme , 2015, 1501.04956.

[46]  E. Poisson Tidal deformation of a slowly rotating black hole , 2014, 1411.4711.

[47]  S. Marsat Cubic-order spin effects in the dynamics and gravitational wave energy flux of compact object binaries , 2014, 1411.4118.

[48]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[49]  I. Rothstein Progress in effective field theory approach to the binary inspiral problem , 2014 .

[50]  K. Chatziioannou,et al.  Tidal heating and torquing of a Kerr black hole to next-to-leading order in the tidal coupling , 2012, 1211.1686.

[51]  Rafael A. Porto,et al.  Spin induced multipole moments for the gravitational wave amplitude from binary inspirals to 2.5 Post-Newtonian order , 2012, 1203.2962.

[52]  T. Damour,et al.  Effective action approach to higher-order relativistic tidal interactions in binary systems and their effective one body description , 2012, 1202.3565.

[53]  M. Smolkin,et al.  Black hole stereotyping: induced gravito-static polarization , 2011, 1110.3764.

[54]  T. Hinderer,et al.  Post-1-Newtonian tidal effects in the gravitational waveform from binary inspirals , 2011, 1101.1673.

[55]  Walter D. Goldberger,et al.  Gravitational radiative corrections from effective field theory , 2009, 0912.4254.

[56]  Wei Song,et al.  Black hole superradiance from Kerr/CFT , 2009, 0907.3477.

[57]  T. Damour,et al.  Relativistic tidal properties of neutron stars , 2009, 0906.0096.

[58]  E. Poisson,et al.  Relativistic theory of tidal Love numbers , 2009, 0906.1366.

[59]  L. El-Jaick,et al.  On Certain Solutions for Confluent and Double-Confluent Heun Equations , 2008, 0807.2219.

[60]  S. Dolan Scattering and absorption of gravitational plane waves by rotating black holes , 2008, 0801.3805.

[61]  Rafael A. Porto Absorption effects due to spin in the worldline approach to black hole dynamics , 2007, 0710.5150.

[62]  T. Hinderer,et al.  Constraining neutron-star tidal Love numbers with gravitational-wave detectors , 2007, 0709.1915.

[63]  '. Racine,et al.  Gravitomagnetic resonant excitation of Rossby modes in coalescing neutron star binaries , 2006, gr-qc/0601029.

[64]  I. Rothstein,et al.  Dissipative effects in the worldline approach to black hole dynamics , 2005, hep-th/0511133.

[65]  G. Lovelace,et al.  Tidal coupling of a schwarzschild black hole and circularly orbiting moon , 2005, gr-qc/0505156.

[66]  J. Camp,et al.  GRAVITATIONAL WAVE ASTRONOMY , 2004 .

[67]  I. Rothstein,et al.  Effective field theory of gravity for extended objects , 2004, hep-th/0409156.

[68]  H. Tagoshi,et al.  Analytic Black Hole Perturbation Approach to Gravitational Radiation , 2003, Living reviews in relativity.

[69]  R. Blandford,et al.  A variational formalism for tidal excitation: non-rotating, homentropic stars , 2002, astro-ph/0209003.

[70]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[71]  K. Glampedakis,et al.  Scattering of scalar waves by rotating black holes , 2001, gr-qc/0102100.

[72]  T. Damour,et al.  Gravitational wave versus binary - pulsar tests of strong field gravity , 1998, gr-qc/9803031.

[73]  J. Maldacena,et al.  Universal low-energy dynamics for rotating black holes , 1997, hep-th/9702015.

[74]  S. Mano,et al.  Analytic Solutions of the Teukolsky Equation and Their Properties , 1996, gr-qc/9611014.

[75]  J. Maldacena,et al.  Black hole greybody factors and D -brane spectroscopy , 1996, hep-th/9609026.

[76]  S. Mano,et al.  Analytic Solutions of the Regge-Wheeler Equation and the Post-Minkowskian Expansion , 1996, gr-qc/9605057.

[77]  S. Mano,et al.  Analytic Solutions of the Teukolsky Equation and Their Low Frequency Expansions , 1996, gr-qc/9603020.

[78]  Sasaki,et al.  Gravitational radiation from a particle in circular orbit around a black hole. V. Black-hole absorption and tail corrections. , 1994, Physical review. D, Particles and fields.

[79]  G. Schäfer,et al.  Gravitational wave tails and binary star systems , 1993 .

[80]  D. Page Particle emission rates from a black hole. III. Charged leptons from a nonrotating hole , 1977 .

[81]  M. P. Ryan,et al.  Low-frequency limit of gravitational scattering , 1977 .

[82]  D. Page Particle emission rates from a black hole. II. Massless particles from a rotating hole , 1976 .

[83]  M. P. Ryan,et al.  Zero-mass plane waves in nonzero gravitational backgrounds , 1976 .

[84]  D. Page Particle emission rates from a black hole: Massless particles from an uncharged, nonrotating hole , 1976 .

[85]  W. Israel,et al.  Lagrangian dynamics of spinning particles and polarized media in general relativity , 1975 .

[86]  W. Press,et al.  Perturbations of a rotating black hole. III. Interaction of the hole with gravitational and electromagnetic radiation. , 1974 .

[87]  Saul A. Teukolsky,et al.  Perturbations of a rotating black hole , 1974 .

[88]  A. A. Starobinskii,et al.  Amplification of electromagnetic and gravitational waves scattered by a rotating ''black hole'' , 1973 .

[89]  Y. Zel’dovich Generation of Waves by a Rotating Body , 1971 .

[90]  W. G. Dixon Dynamics of extended bodies in general relativity - II. Moments of the charge-current vector , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[91]  W. G. Dixon Dynamics of extended bodies in general relativity. I. Momentum and angular momentum , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[92]  A. Papapetrou,et al.  Spinning test-particles in general relativity. I , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[93]  A. Love The Yielding of the Earth to Disturbing Forces , 1909, Nature.

[94]  M. J. Williams,et al.  GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run , 2021, Physical Review D.

[95]  M. J. Williams,et al.  GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run , 2021 .

[96]  The VIRGO Collaboration , 2010 .

[97]  E. Poisson,et al.  Gravitational radiation from a particle in circular orbit around a black hole. I. Analytical results for the nonrotating case. , 1993, Physical review. D, Particles and fields.

[98]  R. Matzner Scattering of Massless Scalar Waves by a Schwarzschild , 1968 .

[99]  S. Klimenko,et al.  Advanced LIGO , 2014, 1411.4547.