Nitrogen dioxide and formaldehyde measurements from the GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator over Houston, Texas

Abstract. The GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator (GCAS) was developed in support of NASA's decadal survey GEO-CAPE geostationary satellite mission. GCAS is an airborne push-broom remote-sensing instrument, consisting of two channels which make hyperspectral measurements in the ultraviolet/visible (optimized for air quality observations) and the visible–near infrared (optimized for ocean color observations). The GCAS instrument participated in its first intensive field campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) campaign in Texas in September 2013. During this campaign, the instrument flew on a King Air B-200 aircraft during 21 flights on 11 days to make air quality observations over Houston, Texas. We present GCAS trace gas retrievals of nitrogen dioxide (NO2) and formaldehyde (CH2O), and compare these results with trace gas columns derived from coincident in situ profile measurements of NO2 and CH2O made by instruments on a P-3B aircraft, and with NO2 observations from ground-based Pandora spectrometers operating in direct-sun and scattered light modes. GCAS tropospheric column measurements correlate well spatially and temporally with columns estimated from the P-3B measurements for both NO2 (r2=0.89) and CH2O (r2=0.54) and with Pandora direct-sun (r2=0.85) and scattered light (r2=0.94) observed NO2 columns. Coincident GCAS columns agree in magnitude with NO2 and CH2O P-3B-observed columns to within 10 % but are larger than scattered light Pandora tropospheric NO2 columns by 33 % and direct-sun Pandora NO2 columns by 50 %.

[1]  M. V. Roozendael,et al.  Intercomparison of four airborne imaging DOAS systems for tropospheric NO2 mapping – the AROMAPEX campaign , 2019, Atmospheric Measurement Techniques.

[2]  A. Kokhanovsky,et al.  Intra-pixel variability in satellite tropospheric NO 2 column densities derived from simultaneous space-borne and airborne observations over the South African Highveld , 2018 .

[3]  J. Herman,et al.  First Top‐Down Estimates of Anthropogenic NOx Emissions Using High‐Resolution Airborne Remote Sensing Observations , 2018 .

[4]  Intercomparison of Pandora stratospheric NO 2 slant column product with the NDACC-certified M07 spectrometer in Lauder, New Zealand , 2017 .

[5]  J. Veefkind,et al.  Retrieval of tropospheric NO 2 columns over Berlin from high-resolution airborne observations with the spectrolite breadboard instrument , 2017 .

[6]  B. Anderson,et al.  HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during DISCOVER-AQ 2013: an intercomparison study , 2017 .

[7]  Zhan Li,et al.  Evaluation of the global MODIS 30 arc-second spatially and temporally complete snow-free land surface albedo and reflectance anisotropy dataset , 2017, Int. J. Appl. Earth Obs. Geoinformation.

[8]  K. Sun,et al.  Deriving the slit functions from OMI solar observations and its implications for ozone-profile retrieval , 2017 .

[9]  M. V. Roozendael,et al.  High-resolution mapping of the NO 2 spatial distribution over Belgian urban areas based on airborne APEX remote sensing , 2017 .

[10]  Thomas P. Kurosu,et al.  Sensitivity of formaldehyde (HCHO) column measurements from a geostationary satellite to temporal variation of the air mass factor in East Asia , 2017 .

[11]  Yunsoo Choi,et al.  Impact of high-resolution sea surface temperature, emission spikes and wind on simulated surface ozone in Houston, Texas during a high ozone episode , 2017 .

[12]  Jay R. Herman,et al.  High‐resolution NO2 observations from the Airborne Compact Atmospheric Mapper: Retrieval and validation , 2017 .

[13]  R. Dickerson,et al.  Use of tethersonde and aircraft profiles to study the impact of mesoscale and microscale meteorology on air quality , 2017 .

[14]  International Journal of Applied Earth Observation and Geoinformation , 2017 .

[15]  Andreas Hueni,et al.  An Algorithm for In-Flight Spectral Calibration of Imaging Spectrometers , 2016, Remote. Sens..

[16]  J. Burrows,et al.  High-resolution airborne imaging DOAS-measurements of NO2 above Bucharest during AROMAT , 2016 .

[17]  Kang Sun,et al.  Characterization of the OCO-2 instrument line shape functions using on-orbit solar measurements , 2016 .

[18]  Yang Wang,et al.  Structural uncertainty in air mass factor calculation for NO2 and HCHO satellite retrievals , 2016 .

[19]  Steffen Beirle,et al.  Parameterizing the instrumental spectral response function and its changes by a super-Gaussian and its derivatives , 2016 .

[20]  J. Peischl,et al.  Convective transport of formaldehyde to the upper troposphere and lower stratosphere and associated scavenging in thunderstorms over the central United States during the 2012 DC3 study , 2016 .

[21]  Shuai Pan,et al.  Constraining NOx emissions using satellite NO2 measurements during 2013 DISCOVER-AQ Texas campaign , 2016 .

[22]  Jassim A. Al-Saadi,et al.  Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013 , 2015 .

[23]  J. Burrows,et al.  A wide field-of-view imaging DOAS instrument for two-dimensional trace gas mapping from aircraft , 2015 .

[24]  P. Monks,et al.  High-resolution measurements from the airborne Atmospheric Nitrogen Dioxide Imager (ANDI) , 2015 .

[25]  Cheng Liu Characterization and verification of ACAM slit functions for trace-gas retrievals during the 2011 DISCOVER-AQ flight campaign , 2015 .

[26]  F. Hendrick,et al.  How consistent are top-down hydrocarbon emissions based on formaldehyde observations from GOME-2 and OMI? , 2015 .

[27]  Yunsoo Choi,et al.  The impact of observation nudging on simulated meteorology and ozone concentrations during DISCOVER-AQ 2013 Texas campaign , 2015 .

[28]  Xiong Liu,et al.  Analysis of ACAM Data for Trace Gas Retrievals during the 2011 DISCOVER-AQ Campaign , 2015 .

[29]  Xiong Liu,et al.  Smithsonian Astrophysical Observatory Ozone Mapping and Profiler Suite (SAO OMPS) formaldehyde retrieval , 2015 .

[30]  J. Veefkind,et al.  Impact of aerosols on the OMI tropospheric NO 2 retrievals over industrialized regions: how accurate is the aerosol correction of cloud-free scenes via a simple cloud model? , 2015 .

[31]  H. R. Anderson,et al.  Quantitative systematic review of the associations between short-term exposure to nitrogen dioxide and mortality and hospital admissions , 2015, BMJ Open.

[32]  Xiong Liu,et al.  Updated Smithsonian Astrophysical Observatory Ozone Monitoring Instrument (SAO OMI) formaldehyde retrieval , 2015 .

[33]  J. Herman,et al.  The use of NO 2 absorption cross section temperature sensitivity to derive NO 2 profile temperature and stratospheric–tropospheric column partitioning from visible direct-sun DOAS measurements , 2014 .

[34]  D. Jacob,et al.  Anthropogenic emissions in Nigeria and implications for atmospheric ozone pollution: A view from space , 2014 .

[35]  K. Chance,et al.  Glyoxal retrieval from the Ozone Monitoring Instrument , 2014 .

[36]  Xiong Liu,et al.  Characterization and verification of ACAM slit functions for trace gas retrievals during the 2011 DISCOVER-AQ flight campaign , 2014 .

[37]  James F. Gleason,et al.  Evaluation of OMI operational standard NO 2 column retrievals using in situ and surface-based NO 2 observations , 2014 .

[38]  D. Jacob,et al.  Anthropogenic emissions of highly reactive volatile organic compounds in eastern Texas inferred from oversampling of satellite (OMI) measurements of HCHO columns , 2014 .

[39]  Nickolay A. Krotkov,et al.  Global dry deposition of nitrogen dioxide and sulfur dioxide inferred from space‐based measurements , 2014 .

[40]  Matthew G. Kowalewski,et al.  Remote sensing capabilities of the GEO-CAPE airborne simulator , 2014, Optics & Photonics - Optical Engineering + Applications.

[41]  Jun Wang,et al.  Advancing measurements of tropospheric NO2 from space: New algorithm and first global results from OMPS , 2014 .

[42]  Xiong Liu,et al.  Water vapor retrieval from OMI visible spectra , 2014 .

[43]  C. Long,et al.  Performance of the Ozone Mapping and Profiler Suite (OMPS) products , 2014 .

[44]  S. Beirle,et al.  Cloud detection and classification based on MAX-DOAS observations , 2013 .

[45]  James F. Gleason,et al.  A new stratospheric and tropospheric NO2 retrieval algorithm for nadir-viewing satellite instruments : applications to OMI , 2013 .

[46]  Ryan Thalman,et al.  Temperature dependent absorption cross-sections of O2-O2 collision pairs between 340 and 630 nm and at atmospherically relevant pressure. , 2013, Physical chemistry chemical physics : PCCP.

[47]  R. Martin,et al.  Improved Satellite Retrievals of NO2 and SO2 over the Canadian Oil Sands and Comparisons with Surface Measurements , 2013 .

[48]  R. Martin,et al.  Retrieving tropospheric nitrogen dioxide from the Ozone Monitoring Instrument: effects of aerosols, surface reflectance anisotropy, and vertical profile of nitrogen dioxide , 2013 .

[49]  Allison M. Leach,et al.  The global nitrogen cycle in the twenty-first century , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[50]  A. Peters,et al.  Long-term air pollution exposure and cardio- respiratory mortality: a review , 2013, Environmental Health.

[51]  Hilke Oetjen,et al.  The CU Airborne MAX-DOAS instrument: vertical profiling of aerosol extinction and trace gases , 2013 .

[52]  D P Edwards,et al.  Tropospheric emissions: monitoring of pollution (TEMPO) , 2012, Optics & Photonics - Optical Engineering + Applications.

[53]  E. R. Polovtseva,et al.  The HITRAN2012 molecular spectroscopic database , 2013 .

[54]  Nicolas Theys,et al.  Improved retrieval of global tropospheric formaldehyde columns from GOME-2/MetOp-A addressing noise reduction and instrumental degradation issues , 2012 .

[55]  Menghua Wang,et al.  The United States' Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA's Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission , 2012 .

[56]  M. V. Roozendael,et al.  High-resolution NO 2 remote sensing from the Airborne Prism EXperiment (APEX) imaging spectrometer , 2012 .

[57]  Ruediger Lang,et al.  Characterization and correction of Global Ozone Monitoring Experiment 2 ultraviolet measurements and application to ozone profile retrievals , 2012 .

[58]  D. Blake,et al.  Detailed comparisons of airborne formaldehyde measurements with box models during the 2006 INTEX-B and MILAGRO campaigns: potential evidence for significant impacts of unmeasured and multi-generation volatile organic carbon compounds , 2011 .

[59]  Xiong Liu,et al.  Retrievals of sulfur dioxide from the Global Ozone Monitoring Experiment 2 (GOME‐2) using an optimal estimation approach: Algorithm and initial validation , 2011 .

[60]  Michael D. King,et al.  Variability in Surface BRDF at Different Spatial Scales (30 m-500 m) Over a Mixed Agricultural Landscape as Retrieved from Airborne and Satellite Spectral Measurements , 2011 .

[61]  Andreas Hilboll,et al.  An improved NO 2 retrieval for the GOME-2 satellite instrument , 2011 .

[62]  Johannes Orphal,et al.  Revised ultraviolet absorption cross sections of H2CO for the HITRAN database , 2011 .

[63]  E. J. Llewellyn,et al.  Fast NO 2 retrievals from Odin-OSIRIS limb scatter measurements , 2010 .

[64]  Alexei Lyapustin,et al.  Assessment of biases in MODIS surface reflectance due to Lambertian approximation , 2010 .

[65]  Jay R. Herman,et al.  Direct Sun measurements of NO2 column abundances from Table Mountain, California: Intercomparison of low- and high-resolution spectrometers , 2010 .

[66]  Kelly Chance,et al.  An improved high-resolution solar reference spectrum for earth's atmosphere measurements in the ultraviolet, visible, and near infrared , 2010 .

[67]  Tanya L. Otte,et al.  The Meteorology-Chemistry Interface Processor (MCIP) for the CMAQ modeling system: updates through MCIPv3.4.1 , 2010 .

[68]  John P. Burrows,et al.  On the improvement of NO 2 satellite retrievals – aerosol impact on the airmass factors , 2009 .

[69]  Xiong Liu,et al.  Ozone profile retrievals from the Ozone Monitoring Instrument , 2009 .

[70]  Maria Tzortziou,et al.  NO2 column amounts from ground‐based Pandora and MFDOAS spectrometers using the direct‐sun DOAS technique: Intercomparisons and application to OMI validation , 2009 .

[71]  Wayne C. Welch,et al.  Airborne high spectral resolution lidar for profiling aerosol optical properties. , 2008, Applied optics.

[72]  S. Piketh,et al.  Direct observation of two dimensional trace gas distributions with an airborne Imaging DOAS instrument , 2008 .

[73]  R. Martin,et al.  Net ecosystem fluxes of isoprene over tropical South America inferred from Global Ozone Monitoring Experiment (GOME) observations of HCHO columns , 2008 .

[74]  Quintus Kleipool,et al.  Earth surface reflectance climatology from 3 years of OMI data , 2008 .

[75]  D. Blake,et al.  Role of convection in redistributing formaldehyde to the upper troposphere over North America and the North Atlantic during the summer 2004 INTEX campaign , 2008 .

[76]  Henk Eskes,et al.  Twelve years of global observations of formaldehyde in the troposphere using GOME and SCIAMACHY sensors , 2008 .

[77]  Henk Eskes,et al.  Intercomparison of SCIAMACHY and OMI Tropospheric NO2 Columns: Observing the Diurnal Evolution of Chemistry and Emissions from Space , 2008 .

[78]  R. Spurr LIDORT and VLIDORT: Linearized pseudo-spherical scalar and vector discrete ordinate radiative transfer models for use in remote sensing retrieval problems , 2008 .

[79]  G. Powers,et al.  A Description of the Advanced Research WRF Version 3 , 2008 .

[80]  Dirk Richter,et al.  First demonstration of a high performance difference frequency spectrometer on airborne platforms. , 2007, Optics express.

[81]  Robert J. D. Spurr,et al.  VLIDORT: A linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media , 2006 .

[82]  A. Fried,et al.  Ultra-high-precision mid-IR spectrometer II: system description and spectroscopic performance , 2006 .

[83]  Alan H. Strahler,et al.  Validation of the MODIS bidirectional reflectance distribution function and albedo retrievals using combined observations from the aqua and terra platforms , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[84]  Heikki Saari,et al.  The ozone monitoring instrument , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[85]  D. Byun,et al.  Review of the Governing Equations, Computational Algorithms, and Other Components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System , 2006 .

[86]  Xiong Liu,et al.  Ozone profile and tropospheric ozone retrievals from the Global Ozone Monitoring Experiment: Algorithm description and validation , 2005 .

[87]  Kelly Chance,et al.  Undersampling correction for array detector-based satellite spectrometers. , 2005, Applied optics.

[88]  Henk Eskes,et al.  Error analysis for tropospheric NO2 retrieval from space , 2004 .

[89]  Kelly Chance,et al.  Stratospheric and tropospheric NO2 observed by SCIAMACHY: first results , 2004 .

[90]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[91]  James F. Gleason,et al.  An improved retrieval of tropospheric nitrogen dioxide from GOME , 2002 .

[92]  Klaus Pfeilsticker,et al.  Analysis for BrO in zenith‐sky spectra: An intercomparison exercise for analysis improvement , 2002 .

[93]  Robert J. D. Spurr,et al.  Air-mass factor formulation for spectroscopic measurements from satellites: application to formaldeh , 2001 .

[94]  Thomas P. Kurosu,et al.  Satellite observations of formaldehyde over North America from GOME , 2000 .

[95]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[96]  B. Hannegan,et al.  Stratospheric ozone in 3-D models : A simple chemistry and the cross-tropopause flux , 2000 .

[97]  Thomas F. Hanisco,et al.  Fourier Transform Ultraviolet Spectroscopy of the A 2Π3/2 ← X 2Π3/2 Transition of BrO† , 1999 .

[98]  Kelly Chance,et al.  Analysis of BrO measurements from the Global Ozone Monitoring Experiment , 1998 .

[99]  Ann Carine Vandaele,et al.  Measurements of the NO2 absorption cross-section from 42 000 cm−1 to 10 000 cm−1 (238–1000 nm) at 220 K and 294 K , 1998 .

[100]  K. Chance,et al.  Ring effect studies: Rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum. , 1997, Applied optics.

[101]  J. Brion,et al.  High-resolution laboratory absorption cross section of O3. Temperature effect , 1993 .

[102]  M. Prather Catastrophic loss of stratospheric ozone in dense volcanic clouds , 1992 .

[103]  F. E. Grahek,et al.  A Small, Low Flow, High Sensitivity Reaction Vessel for NO Chemiluminescence Detectors , 1990 .