Reintroducing electrostatics into macromolecular crystallographic refinement: application to neutron crystallography and DNA hydration.

[1]  Timothy D. Fenn,et al.  Polarizable atomic multipole x-ray refinement: hydration geometry and application to macromolecules. , 2010, Biophysical journal.

[2]  H. L. Carrell,et al.  Metal ion roles and the movement of hydrogen during reaction catalyzed by D-xylose isomerase: a joint x-ray and neutron diffraction study. , 2010, Structure.

[3]  Michael Levitt,et al.  Super-resolution biomolecular crystallography with low-resolution data , 2010, Nature.

[4]  Margaret E. Johnson,et al.  Current status of the AMOEBA polarizable force field. , 2010, The journal of physical chemistry. B.

[5]  H. Schwalbe,et al.  High-resolution NMR structure of an RNA model system: the 14-mer cUUCGg tetraloop hairpin RNA , 2009, Nucleic acids research.

[6]  Timothy D. Fenn,et al.  Polarizable atomic multipole X-ray refinement: application to peptide crystals , 2009, Acta crystallographica. Section D, Biological crystallography.

[7]  Paul D. Adams,et al.  Generalized X-ray and neutron crystallographic analysis: more accurate and complete structures for biological macromolecules , 2009, Acta crystallographica. Section D, Biological crystallography.

[8]  Paul Langan,et al.  Neutron crystallography: opportunities, challenges, and limitations. , 2008, Current opinion in structural biology.

[9]  I. Weber,et al.  Hydration water and bulk water in proteins have distinct properties in radial distributions calculated from 105 atomic resolution crystal structures. , 2008, The journal of physical chemistry. B.

[10]  B. Schoenborn,et al.  Protein structures by spallation neutron crystallography , 2008, Journal of synchrotron radiation.

[11]  S. Feller,et al.  Computational modeling of membrane bilayers , 2008 .

[12]  Celeste Sagui,et al.  Electrostatics in Biomolecular Simulations: Where Are We Now and Where Are We Heading? , 2008 .

[13]  Jay W Ponder,et al.  Polarizable Atomic Multipole Solutes in a Generalized Kirkwood Continuum. , 2007, Journal of chemical theory and computation.

[14]  A. Soper,et al.  Joint structure refinement of x-ray and neutron diffraction data on disordered materials: application to liquid water , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  Nathan A. Baker,et al.  Polarizable atomic multipole solutes in a Poisson-Boltzmann continuum. , 2007, The Journal of chemical physics.

[16]  M. Fuertes,et al.  Molecular Mechanisms for the B‐Z Transition in the Example of Poly[d(G—C)×d(G—C)] Polymers. A Critical Review , 2006 .

[17]  B. Bagchi,et al.  Entropy of water in the hydration layer of major and minor grooves of DNA. , 2006, The journal of physical chemistry. B.

[18]  M. Mustyakimov,et al.  Synthesis, capillary crystallization and preliminary joint X-ray and neutron crystallographic study of Z-DNA without polyamine at low pH. , 2006, Acta crystallographica. Section F, Structural biology and crystallization communications.

[19]  M. Fuertes,et al.  Molecular mechanisms for the B-Z transition in the example of poly[d(G-C) x d(G-C)] polymers. A critical review. , 2006, Chemical reviews.

[20]  Ichiro Tanaka,et al.  The hydration structure of a Z-DNA hexameric duplex determined by a neutron diffraction technique. , 2005, Acta crystallographica. Section D, Biological crystallography.

[21]  N. Suzuki,et al.  Complicated water orientations in the minor groove of the B-DNA decamer d(CCATTAATGG)2 observed by neutron diffraction measurements , 2005, Nucleic acids research.

[22]  Axel T Brunger,et al.  Low-resolution crystallography is coming of age. , 2005, Structure.

[23]  Tobias Steinel,et al.  Watching Hydrogen Bonds Break: A Transient Absorption Study of Water. , 2004, The journal of physical chemistry. A.

[24]  L. Williams,et al.  High-resolution structure of an extended A-tract: [d(CGCAAATTTGCG)]2. , 2004, Journal of the American Chemical Society.

[25]  E B Krissinel,et al.  The new CCP4 Coordinate Library as a toolkit for the design of coordinate-related applications in protein crystallography. , 2004, Acta crystallographica. Section D, Biological crystallography.

[26]  M. S. Chapman,et al.  Impact of a Poisson-Boltzmann electrostatic restraint on protein structures refined at medium resolution. , 2004, Acta crystallographica. Section D, Biological crystallography.

[27]  Pengyu Y. Ren,et al.  Temperature and Pressure Dependence of the AMOEBA Water Model , 2004 .

[28]  G. Petsko,et al.  Xylose isomerase in substrate and inhibitor michaelis States: atomic resolution studies of a metal-mediated hydride shift(,). , 2004 .

[29]  D. Baker,et al.  Close agreement between the orientation dependence of hydrogen bonds observed in protein structures and quantum mechanical calculations. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[30]  G. Murshudov,et al.  DNA variability in five crystal structures of d(CGCAATTGCG). , 2004, Acta crystallographica. Section D, Biological crystallography.

[31]  Celeste Sagui,et al.  Towards an accurate representation of electrostatics in classical force fields: efficient implementation of multipolar interactions in biomolecular simulations. , 2004, The Journal of chemical physics.

[32]  G. Petsko,et al.  Xylose isomerase in substrate and inhibitor michaelis states: atomic resolution studies of a metal-mediated hydride shift. , 2004, Biochemistry.

[33]  Thomas Simonson,et al.  Reintroducing electrostatics into protein X-ray structure refinement: bulk solvent treated as a dielectric continuum. , 2003, Acta crystallographica. Section D, Biological crystallography.

[34]  Dagmar Ringe,et al.  POVScript+: a program for model and data visualization using persistence of vision ray-tracing , 2003 .

[35]  Pengyu Y. Ren,et al.  Polarizable Atomic Multipole Water Model for Molecular Mechanics Simulation , 2003 .

[36]  M. Nilges,et al.  Refinement of protein structures in explicit solvent , 2003, Proteins.

[37]  Kazuo Kurihara,et al.  Hydration in proteins observed by high‐resolution neutron crystallography , 2003, Proteins.

[38]  J. Ponder,et al.  Force fields for protein simulations. , 2003, Advances in protein chemistry.

[39]  A. Wang,et al.  Effects of polyamines on the thermal stability and formation kinetics of DNA duplexes with abnormal structure. , 2001, Nucleic acids research.

[40]  Z Dauter,et al.  Anomalous signal of phosphorus used for phasing DNA oligomer: importance of data redundancy. , 2001, Acta crystallographica. Section D, Biological crystallography.

[41]  Gautam R. Desiraju,et al.  The Weak Hydrogen Bond , 2001 .

[42]  L. Malinina,et al.  Solvent Organization in an Oligonucleotide Crystal , 2000, The Journal of Biological Chemistry.

[43]  L. McLaughlin,et al.  Minor Groove Hydration Is Critical to the Stability of DNA Duplexes , 2000 .

[44]  Gautam R. Desiraju,et al.  The Weak Hydrogen Bond: In Structural Chemistry and Biology , 1999 .

[45]  R. Dickerson,et al.  Absence of minor groove monovalent cations in the crosslinked dodecamer C-G-C-G-A-A-T-T-C-G-C-G. , 1999, Journal of molecular biology.

[46]  M. Egli,et al.  Atomic-resolution crystal structures of B-DNA reveal specific influences of divalent metal ions on conformation and packing. , 1999, Journal of molecular biology.

[47]  T. Darden,et al.  Molecular dynamics simulations of biomolecules: long-range electrostatic effects. , 1999, Annual review of biophysics and biomolecular structure.

[48]  Axel T. Brunger,et al.  Phase Improvement by Multi-Start Simulated Annealing Refinement and Structure-Factor Averaging , 1998 .

[49]  A. Warshel,et al.  Electrostatic effects in macromolecules: fundamental concepts and practical modeling. , 1998, Current opinion in structural biology.

[50]  D. Beveridge,et al.  A 5-nanosecond molecular dynamics trajectory for B-DNA: analysis of structure, motions, and solvation. , 1997, Biophysical journal.

[51]  R. Read,et al.  Cross-validated maximum likelihood enhances crystallographic simulated annealing refinement. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Haiyan Liu,et al.  The reaction pathway of the isomerization of d‐xylose catalyzed by the enzyme d‐xylose isomerase: A theoretical study , 1997, Proteins.

[53]  Bhyravabhotla Jayaram,et al.  Intrusion of Counterions into the Spine of Hydration in the Minor Groove of B-DNA: Fractional Occupancy of Electronegative Pockets , 1997 .

[54]  P. S. Ho,et al.  Z-DNA crystallography . , 1997, Biopolymers.

[55]  M. Rao,et al.  Molecular and industrial aspects of glucose isomerase. , 1996, Microbiological reviews.

[56]  C. Pace,et al.  Forces contributing to the conformational stability of proteins , 1996, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[57]  H. Berman,et al.  New parameters for the refinement of nucleic acid-containing structures. , 1996, Acta crystallographica. Section D, Biological crystallography.

[58]  D. Chandler,et al.  Hydrogen-bond kinetics in liquid water , 1996, Nature.

[59]  M. Fuxreiter,et al.  Molecular modelling of xylose isomerase catalysis: the role of electrostatics and charge transfer to metals. , 1995, Protein engineering.

[60]  T. Darden,et al.  Toward the Accurate Modeling of DNA: The Importance of Long-Range Electrostatics , 1995 .

[61]  Karen N. Allen,et al.  X-ray crystallographic structures of D-xylose isomerase-substrate complexes position the substrate and provide evidence for metal movement during catalysis. , 1994, Biochemistry.

[62]  G. Quigley,et al.  Comparative studies of high resolution Z-DNA crystal structures. Part 1: Common hydration patterns of alternating dC-dG. , 1994, Journal of molecular biology.

[63]  Karen N. Allen,et al.  Isotopic exchange plus substrate and inhibition kinetics of D-xylose isomerase do not support a proton-transfer mechanism. , 1994, Biochemistry.

[64]  Karen N. Allen,et al.  Role of the divalent metal ion in sugar binding, ring opening, and isomerization by D-xylose isomerase: replacement of a catalytic metal by an amino acid. , 1994, Biochemistry.

[65]  A. Rich,et al.  The low-temperature crystal structure of the pure-spermine form of Z-DNA reveals binding of a spermine molecule in the minor groove. , 1993, Biochemistry.

[66]  T. Darden,et al.  The effect of long‐range electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and truncated list methods , 1993 .

[67]  J. C. Yang,et al.  Structural and dynamic studies of a non-self-complementary dodecamer DNA duplex. , 1993, Nucleic acids research.

[68]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[69]  A. Fersht,et al.  Principles of protein stability derived from protein engineering experiments , 1993 .

[70]  K. Wüthrich,et al.  NMR observation of individual molecules of hydration water bound to DNA duplexes: direct evidence for a spine of hydration water present in aqueous solution. , 1992, Nucleic Acids Research.

[71]  D. Wemmer,et al.  NMR evidence for DNA bound water in solution , 1992 .

[72]  M A Eriksson,et al.  A molecular dynamics study of conformational changes and hydration of left‐handed d (CGCGCGCGCGCG)2 in a nonsalt solution , 1992, Biopolymers.

[73]  O. Steinhauser,et al.  Cutoff size does strongly influence molecular dynamics results on solvated polypeptides. , 1992, Biochemistry.

[74]  R M Stroud,et al.  Solvent structure in crystals of trypsin determined by X‐ray and neutron diffraction , 1992, Proteins.

[75]  K Wüthrich,et al.  Protein hydration in aqueous solution. , 1992, Faraday discussions.

[76]  A. Rich,et al.  Structure of the pure-spermine form of Z-DNA (magnesium free) at 1-A resolution. , 1991, Biochemistry.

[77]  W. Vangrysperre,et al.  Kinetic studies of Mg(2+)-, Co(2+)- and Mn(2+)-activated D-xylose isomerases. , 1991, The Biochemical journal.

[78]  R. Huber,et al.  Accurate Bond and Angle Parameters for X-ray Protein Structure Refinement , 1991 .

[79]  V. P. Chuprina,et al.  Molecular dynamics simulation of the hydration shell of a B-DNA decamer reveals two main types of minor-groove hydration depending on groove width. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[80]  D. Blow,et al.  Mechanism for aldose-ketose interconversion by D-xylose isomerase involving ring opening followed by a 1,2-hydride shift. , 1993, Journal of molecular biology.

[81]  J. Skehel,et al.  Refinement of the influenza virus hemagglutinin by simulated annealing. , 1991, Journal of molecular biology.

[82]  J. Zeikus,et al.  Catalytic mechanism of xylose (glucose) isomerase from Clostridium thermosulfurogenes. Characterization of the structural gene and function of active site histidine. , 1990, The Journal of biological chemistry.

[83]  D. Blow,et al.  Observations of reaction intermediates and the mechanism of aldose-ketose interconversion by D-xylose isomerase. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[84]  G A Petsko,et al.  Crystallographic studies of the mechanism of xylose isomerase. , 1989, Biochemistry.

[85]  A. Laaksonen,et al.  Molecular dynamics simulation of double helix Z-DNA in solution , 1989 .

[86]  W. L. Jorgensen,et al.  The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. , 1988, Journal of the American Chemical Society.

[87]  K. Swamy,et al.  Hydration structure and dynamics of B‐ and Z‐DNA in the presence of counterions via molecular dynamics simulations , 1987, Biopolymers.

[88]  M. Karplus,et al.  Crystallographic R Factor Refinement by Molecular Dynamics , 1987, Science.

[89]  M Karplus,et al.  Transition from B to Z DNA: contribution of internal fluctuations to the configurational entropy difference. , 1985, Science.

[90]  A. Rich,et al.  AT base pairs are less stable than GC base pairs in Z-DNA: The crystal structure of d(m5CGTAm5CG) , 1984, Cell.

[91]  E. Baker,et al.  Hydrogen bonding in globular proteins. , 1984, Progress in biophysics and molecular biology.

[92]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[93]  H R Drew,et al.  Structure of a B-DNA dodecamer. III. Geometry of hydration. , 1981, Journal of molecular biology.

[94]  Richard E. Dickerson,et al.  Crystal structure analysis of a complete turn of B-DNA , 1980, Nature.

[95]  M. Tamura,et al.  Physico-chemical and Enzymatic Properties of Purified Glucose Isomerases from Streptomyces olivochromogenes and Bacillus stearothermophilus , 1978 .

[96]  T M Jovin,et al.  Salt-induced co-operative conformational change of a synthetic DNA: equilibrium and kinetic studies with poly (dG-dC). , 1972, Journal of molecular biology.

[97]  G. E. BACON,et al.  Neutron Diffraction , 1972, Nature.

[98]  I. A. Rose,et al.  Anomeric specificity and mechanism of two pentose isomerases. , 1971, Biochemistry.

[99]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .