Forecasting with mixed-frequency data

[1]  Ana Beatriz Galvão,et al.  Changes in predictive ability with mixed frequency data , 2013 .

[2]  Eric Ghysels,et al.  State Space Models and MIDAS Regressions , 2013 .

[3]  Simon M. Potter,et al.  Dynamic Hierarchical Factor Models , 2011, Review of Economics and Statistics.

[4]  Catherine Doz,et al.  A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models , 2006, Review of Economics and Statistics.

[5]  Michael T. Owyang,et al.  Forecasting with Mixed Frequencies , 2010 .

[6]  Eric Ghysels,et al.  Regression Models with Mixed Sampling Frequencies , 2010 .

[7]  Michael P. Clements,et al.  Forecasting US output growth using leading indicators: an appraisal using MIDAS models , 2009 .

[8]  Massimiliano Marcellino,et al.  Midas Vs. Mixed-Frequency VAR: Nowcasting GDP in the Euro Area , 2009 .

[9]  D. Hendry,et al.  Combining Disaggregate Forecasts or Combining Disaggregate Information to Forecast an Aggregate , 2009, SSRN Electronic Journal.

[10]  Eric Ghysels,et al.  A Component Model for Dynamic Correlations , 2009 .

[11]  Rossen Valkanov,et al.  Granger Causality Tests with Mixed Data Frequencies , 2009 .

[12]  M. Marcellino,et al.  Midas Versus Mixed-Frequency VAR: Nowcasting GDP in the Euro Area , 2009, SSRN Electronic Journal.

[13]  Fulvio Corsi,et al.  A Simple Approximate Long-Memory Model of Realized Volatility , 2008 .

[14]  R. Engle,et al.  On the Economic Sources of Stock Market Volatility , 2008 .

[15]  Libero Monteforte,et al.  Real Time Forecasts of Inflation: The Role of Financial Variables , 2008 .

[16]  James D. Hamilton Daily Monetary Policy Shocks and the Delayed Response of New Home Sales , 2008 .

[17]  J. Bai,et al.  Large Dimensional Factor Analysis , 2008 .

[18]  Eric Ghysels,et al.  News - Good or Bad - and its Impact on Volatility Predictions over Multiple Horizons , 2008 .

[19]  David H. Small,et al.  Nowcasting: the real time informational content of macroeconomic data releases , 2008 .

[20]  C. Emre Alper,et al.  Forecasting Stock Market Volatilities Using MIDAS Regressions: An Application to the Emerging Markets , 2008 .

[21]  F. Dias,et al.  Determining the number of factors in approximate factor models with global and group-specific factors , 2008 .

[22]  Michael T. Owyang,et al.  Measuring the Information Content of the Beige Book: A Mixed Data Sampling Approach , 2008 .

[23]  Catherine Doz,et al.  A Two-Step Estimator for Large Approximate Dynamic Factor Models Based on Kalman Filtering , 2007 .

[24]  F. Diebold,et al.  Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility , 2005, The Review of Economics and Statistics.

[25]  Anthony S. Tay Financial Variables as Predictors of Real Output Growth , 2007 .

[26]  Michael P. Clements,et al.  Quantile forecasts of daily exchange rate returns from forecasts of realized volatility , 2008 .

[27]  Francis X. Diebold,et al.  Real-Time Measurement of Business Conditions , 2007 .

[28]  Jörg Breitung,et al.  Real-Time Forecasting of GDP Based on a Large Factor Model with Monthly and Quarterly Data , 2007, SSRN Electronic Journal.

[29]  E. Ghysels,et al.  Why Do Absolute Returns Predict Volatility So Well , 2006 .

[30]  Eric Ghysels,et al.  Forecasting Professional Forecasters , 2006 .

[31]  E. Ghysels,et al.  Volatility Forecasting and Microstructure Noise , 2006 .

[32]  Michael P. Clements,et al.  Macroeconomic Forecasting with Mixed Frequency Data: Forecasting Us Output Growth and Inflation , 2006 .

[33]  E. Ghysels,et al.  MIDAS Regressions: Further Results and New Directions , 2006 .

[34]  Anthony S. Tay Mixing Frequencies: Stock Returns as a Predictor of Real Output Growth , 2006 .

[35]  F. Diebold,et al.  VOLATILITY AND CORRELATION FORECASTING , 2006 .

[36]  J. Stock,et al.  A Comparison of Direct and Iterated Multistep Ar Methods for Forecasting Macroeconomic Time Series , 2005 .

[37]  Gonzalo Rubio Irigoyen,et al.  The Relationship between Risk and Expected Return in Europe , 2005 .

[38]  Eric Ghysels,et al.  Série Scientifique Scientific Series the Midas Touch: Mixed Data Sampling Regression Models the Midas Touch: Mixed Data Sampling Regression Models* , 2022 .

[39]  Stefan Mittnik,et al.  Forecasting Quarterly German GDP at Monthly Intervals Using Monthly Ifo Business Conditions Data , 2004, SSRN Electronic Journal.

[40]  David F. Hendry,et al.  Non-Parametric Direct Multi-Step Estimation for Forecasting Economic Processes , 2004 .

[41]  Neil Shephard,et al.  Power variation and stochastic volatility: a review and some new results , 2004, Journal of Applied Probability.

[42]  E. Ghysels,et al.  There is a Risk-Return Tradeoff after All , 2004 .

[43]  E. Ghysels,et al.  Série Scientifique Scientific Series Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies , 2022 .

[44]  J. Bai,et al.  Inferential Theory for Factor Models of Large Dimensions , 2003 .

[45]  N. Shephard,et al.  Power and bipower variation with stochastic volatility and jumps , 2003 .

[46]  J. Stock,et al.  Forecasting Using Principal Components From a Large Number of Predictors , 2002 .

[47]  Marco Lippi,et al.  The Generalized Dynamic Factor Model , 2002 .

[48]  R. Mariano,et al.  A New Coincident Index of Business Cycles Based on Monthly and Quarterly Series , 2002 .

[49]  J. Stock,et al.  Forecasting Output and Inflation: The Role of Asset Prices , 2001 .

[50]  Michael W. Brandt,et al.  Range-Based Estimation of Stochastic Volatility Models , 2001 .

[51]  M. Hallin,et al.  The Generalized Dynamic-Factor Model: Identification and Estimation , 2000, Review of Economics and Statistics.

[52]  J. Bai,et al.  Determining the Number of Factors in Approximate Factor Models , 2000 .

[53]  A. Gallant,et al.  Using Daily Range Data to Calibrate Volatility Diffusions and Extract the Forward Integrated Variance , 1999, Review of Economics and Statistics.

[54]  M. Watson,et al.  Systematic Monetary Policy and the Effects of Oil Price Shocks , 1997 .

[55]  Michael P. Clements,et al.  Multi-Step Estimation For Forecasting , 2009 .

[56]  Shu-Ing Liu,et al.  Model selection for multiperiod forecasts , 1996 .

[57]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[58]  C. Granger,et al.  A long memory property of stock market returns and a new model , 1993 .

[59]  Luiz Koodi Hotta,et al.  THE EFFECT OF AGGREGATION ON PREDICTION IN AUTOREGRESSIVE INTEGRATED MOVING‐AVERAGE MODELS , 1993 .

[60]  R. Fildes Forecasting structural time series models and the kalman filter: Andrew Harvey, 1989, (Cambridge University Press), 554 pp., ISBN 0-521-32196-4 , 1992 .

[61]  Peter A. Zadrozny Forecasting U.S. GNP at monthly intervals with an estimated bivariate time series model , 1990 .

[62]  Robert F. Engle,et al.  Stock Volatility and the Crash of '87: Discussion , 1990 .

[63]  C. Granger Aggregation of time series variables-a survey , 1988 .

[64]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[65]  D. Findley,et al.  Model Selection for Multi-Step-Ahead Forecasting , 1985 .

[66]  Andrew Harvey,et al.  Estimating Missing Observations in Economic Time Series , 1984 .

[67]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .