Dynamical friction of massive objects in galactic centres

Dynamical friction leads to an orbital decay of massive objects like young compact star clusters or massive black holes in central regions of galaxies. The dynamical friction force can be well approximated by Chandrasekhar's standard formula, but recent investigations show that corrections to the Coulomb logarithm are necessary. With a large set of N-body simulations we show that the improved formula for the Coulomb logarithm fits the orbital decay very well for circular and eccentric orbits. The local scalelength of the background density distribution serves as the maximum impact parameter for a wide range of power-law indices of -1 ... -5. For each type of code the numerical resolution must be compared to the effective minimum impact parameter in order to determine the Coulomb logarithm. We also quantify the correction factors by using self-consistent velocity distribution functions instead of the standard Maxwellian often used. These factors enter directly the decay time-scale and cover a range of 0.5 ... 3 for typical orbits. The new Coulomb logarithm combined with self-consistent velocity distribution functions in the Chandrasekhar formula provides a significant improvement of orbital decay times with correction up to one order of magnitude compared to the standard case. We suggest the general use of the improved formula in parameter studies as well as in special applications.

[1]  Richard A. Wolf,et al.  Star distribution around a massive black hole in a globular cluster , 1976 .

[2]  E. Salpeter,et al.  Flow past a massive object and the gravitational drag , 1980 .

[3]  Toshikazu Ebisuzaki,et al.  UvA-DARE ( Digital Academic Repository ) Missing Link Found ? The " Runaway " Path to Supermassive Black Holes , 2001 .

[4]  Ian S. McLean,et al.  Massive Stars in the Quintuplet Cluster , 1999 .

[5]  J. Makino,et al.  On the Origin of Density Cusps in Elliptical Galaxies , 1997, astro-ph/9710135.

[6]  P. J. E. Peebles,et al.  Star Distribution Near a Collapsed Object , 1972 .

[7]  David Merritt,et al.  Systolic and Hyper-Systolic Algorithms for the Gravitational N-Body Problem, with an Application to Brownian Motion , 2001, ArXiv.

[8]  S. Shapiro,et al.  The distribution of stars around a massive black hole , 1976, Nature.

[9]  Robert I. McLachlan,et al.  On the Numerical Integration of Ordinary Differential Equations by Symmetric Composition Methods , 1995, SIAM J. Sci. Comput..

[10]  Kiel,et al.  The efficiency of the spiral- in of a black hole to the Galactic centre , 2002, astro-ph/0212494.

[11]  Michael G. Burton,et al.  The Discovery of Hot Stars near the Galactic Center Thermal Radio Filaments , 1996 .

[12]  Rainer Spurzem,et al.  N-Body Growth of a Bahcall-Wolf Cusp around a Black Hole , 2004, astro-ph/0406324.

[13]  M. Milosavljevic,et al.  Formation of Galactic Nuclei , 2001, astro-ph/0103350.

[14]  John Kormendy,et al.  Inward Bound—The Search for Supermassive Black Holes in Galactic Nuclei , 1995 .

[15]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[16]  T. Ebisuzaki,et al.  Orbital Evolution of an IMBH in the Galactic Nucleus with a Massive Central Black Hole , 2007 .

[17]  Shigeki Inoue The test for suppressed dynamical friction in a constant density core of dwarf galaxies , 2009, 0901.4861.

[18]  S. Tremaine The effect of dynamical friction on the orbits of the Magellanic clouds , 1976 .

[19]  Simon Portegies Zwart,et al.  SAPPORO: A way to turn your graphics cards into a GRAPE-6 , 2009, ArXiv.

[20]  L. Spitzer Dynamical evolution of globular clusters , 1987 .

[21]  L. Hernquist,et al.  Simulations of satellite orbital decay , 1989 .

[22]  Rainer Spurzem,et al.  BINARY BLACK HOLE MERGER IN GALACTIC NUCLEI: POST-NEWTONIAN SIMULATIONS , 2008, 0812.2756.

[23]  Toshio Tsuchiya,et al.  Orbital Deformation of Satellites by Dynamical Friction in Spherical Halos with Anisotropic Velocity Dispersion , 2000 .

[24]  Subrahmanyan Chandrasekhar,et al.  Principles of Stellar Dynamics , 1942 .

[25]  C. Grillmair,et al.  A family of models for spherical stellar systems , 1994 .

[26]  Caltech,et al.  Long-Term Evolution of Massive Black Hole Binaries , 2002, astro-ph/0212459.

[27]  A. Perego,et al.  Dual black holes in merger remnants – II. Spin evolution and gravitational recoil , 2009, 0910.5729.

[28]  Piero Madau,et al.  The Assembly and Merging History of Supermassive Black Holes in Hierarchical Models of Galaxy Formation , 2002, astro-ph/0207276.

[29]  Alessia Gualandris,et al.  Ejection of Supermassive Black Holes from Galaxy Cores , 2007, 0708.0771.

[30]  M. Rees,et al.  The formation of nuclei in newly formed galaxies and the evolution of the quasar population , 1993 .

[31]  D. Heggie,et al.  Statistics of N-Body Simulations - Part Two - Equal Masses after Core Collapse , 1994, astro-ph/9403024.

[32]  Hans-Peter Bischof,et al.  EFFICIENT MERGER OF BINARY SUPERMASSIVE BLACK HOLES IN NON- AXISYMMETRIC GALAXIES , 2006 .

[33]  Dynamical friction in constant density cores: a failure of the Chandrasekhar formula , 2006, astro-ph/0606636.

[34]  Bradley M. Peterson,et al.  Supermassive Black Holes in Active Galactic Nuclei. I. The Consistency of Black Hole Masses in Quiescent and Active Galaxies , 2001, astro-ph/0104380.

[35]  T. Ebisuzaki,et al.  Merging of Galaxies with Central Black Holes. I. Hierarchical Mergings of Equal-Mass Galaxies , 1996 .

[36]  J. Makino,et al.  Evolution of Massive Black Hole Triples. I. Equal-Mass Binary-Single Systems , 2005, astro-ph/0511391.

[37]  M. Weinberg Self-gravitating response of a spherical galaxy to sinking satellites , 1989 .

[38]  D. Merritt Mass Deficits, Stalling Radii, and the Merger Histories of Elliptical Galaxies , 2006, astro-ph/0603439.

[39]  J. Peñarrubia,et al.  Dynamical friction in flattened systems: a numerical test of Binney's approach , 2004, astro-ph/0401159.

[40]  D. Merritt,et al.  Brownian Motion of a Massive Binary , 2000, astro-ph/0012264.

[41]  R. Spurzem,et al.  Collisional Dynamics around Binary Black Holes in Galactic Centers , 2001, astro-ph/0103410.

[42]  Norbert Hubin,et al.  SINFONI in the Galactic Center: Young Stars and Infrared Flares in the Central Light-Month , 2005 .

[43]  J. C. Muzzio,et al.  Orbital decay of galactic satellites as a result of dynamical friction , 1997 .

[44]  William M. MacDonald,et al.  Fokker-Planck Equation for an Inverse-Square Force , 1957 .

[45]  J. Makino,et al.  Evolution of Star Clusters near the Galactic Center: Fully Self-Consistent N-Body Simulations , 2007, 0708.3719.

[46]  Junichiro Makino,et al.  Evolution of Massive Black Hole Binaries , 2003 .

[47]  Junichiro Makino,et al.  Triplets of supermassive black holes: Astrophysics, Gravitational Waves and Detection , 2009, 0910.1587.

[48]  E. Quataert,et al.  Dynamical friction and galaxy merging time-scales , 2007, 0707.2960.

[49]  R. Genzel,et al.  Physical conditions, dynamics, and mass distribution in the center of the galaxy , 1987 .

[50]  D. Merritt,et al.  Performance Analysis of Direct N-Body Algorithms on Special-Purpose Supercomputers , 2006, astro-ph/0608125.

[51]  S. Aarseth,et al.  A Time-Transformed Leapfrog Scheme , 2002 .

[52]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[53]  Carl J. Grillmair,et al.  The Centers of Early-Type Galaxies with HST.I.An Observational Survey , 1995 .

[54]  P. Kroupa,et al.  SUPERBOX – an efficient code for collisionless galactic dynamics , 2000 .

[55]  J. Makino,et al.  To Circularize or Not To Circularize?—Orbital Evolution of Satellite Galaxies , 2002, astro-ph/0208452.

[56]  F. Hoyle,et al.  On the Mechanism of Accretion by Stars , 1944 .

[57]  Rainer Spurzem,et al.  Long-Term Evolution of Massive Black Hole Binaries. II. Binary Evolution in Low-Density Galaxies , 2005, astro-ph/0507260.

[58]  M. Volonteri Gravitational Recoil: Signatures on the Massive Black Hole Population , 2007, astro-ph/0703180.

[59]  Walter Dehnen,et al.  A family of potential–density pairs for spherical galaxies and bulges , 1993 .