Numerical Analysis of a Robust Free Energy Diminishing Finite Volume Scheme for Parabolic Equations with Gradient Structure

We present a numerical method for approximating the solutions of degenerate parabolic equations with a formal gradient flow structure. The numerical method we propose preserves at the discrete level the formal gradient flow structure, allowing the use of some nonlinear test functions in the analysis. The existence of a solution to and the convergence of the scheme are proved under very general assumptions on the continuous problem (nonlinearities, anisotropy, heterogeneity) and on the mesh. Moreover, we provide numerical evidences of the efficiency and of the robustness of our approach.

[1]  Daniel Matthes,et al.  A Convergent Lagrangian Discretization for a Nonlinear Fourth-Order Equation , 2017, Found. Comput. Math..

[2]  S. Lisini Nonlinear diffusion equations with variable coefficients as gradient flows in Wasserstein spaces , 2009 .

[3]  Zhiqiang Sheng,et al.  Monotone finite volume schemes for diffusion equations on polygonal meshes , 2008, J. Comput. Phys..

[4]  Vivette Girault,et al.  Finite elements approximation of second order linear elliptic equations in divergence form with right-hand side in L1 , 2006, Numerische Mathematik.

[5]  Roland Masson,et al.  Vertex Approximate Gradient Scheme for Hybrid Dimensional Two-Phase Darcy Flows in Fractured Porous Media , 2014 .

[6]  Noureddine Igbida,et al.  Hele-Shaw type problems with dynamical boundary conditions , 2007 .

[7]  L. Ambrosio,et al.  Gradient flow of the Chapman–Rubinstein–Schatzman model for signed vortices , 2011 .

[8]  Clément Cancès,et al.  Finite volume approximation for an immiscible two-phase flow in porous media with discontinuous capillary pressure , 2013, Computational Geosciences.

[9]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[10]  L. Monsaingeon,et al.  The gradient flow structure for incompressible immiscible two-phase flows in porous media , 2015, 1503.01330.

[11]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[12]  Bogdan-Vasile Matioc,et al.  A gradient flow approach to a thin film approximation of the Muskat problem , 2013 .

[13]  Hussein Hoteit,et al.  Numerical modeling of two-phase flow in heterogeneous permeable media with different capillarity pressures , 2008 .

[14]  Jérôme Droniou,et al.  Construction and Convergence Study of Schemes Preserving the Elliptic Local Maximum Principle , 2011, SIAM J. Numer. Anal..

[15]  D. Matthes,et al.  Convergence of a variational Lagrangian scheme for a nonlinear drift diffusion equation , 2013, 1301.0747.

[16]  J. Maas,et al.  Gradient flow structures for discrete porous medium equations , 2012, 1212.1129.

[17]  Quentin Mérigot,et al.  Discretization of functionals involving the Monge–Ampère operator , 2014, Numerische Mathematik.

[18]  Adrien Blanchet,et al.  A GRADIENT FLOW APPROACH TO THE KELLER-SEGEL SYSTEMS (Progress in Variational Problems : Variational Problems Interacting with Probability Theories) , 2013 .

[19]  Arnaud Guillin,et al.  Uniform Convergence to Equilibrium for Granular Media , 2012, 1204.4138.

[20]  Christophe Le Potier Correction non linéaire et principe du maximum pour la discrétisation d'opérateurs de diffusion avec des schémas volumes finis centrés sur les mailles , 2010 .

[21]  D. Kinderlehrer,et al.  Approximation of Parabolic Equations Using the Wasserstein Metric , 1999 .

[22]  Raphaèle Herbin,et al.  Small-stencil 3D schemes for diffusive flows in porous media , 2012 .

[23]  I. V. Kapyrin A family of monotone methods for the numerical solution of three-dimensional diffusion problems on unstructured tetrahedral meshes , 2007 .

[24]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[25]  Roland Masson,et al.  VERTEX CENTRED DISCRETIZATION OF TWO-PHASE DARCY FLOWS ON GENERAL MESHES , 2012 .

[26]  Gabriel Peyré,et al.  Entropic Approximation of Wasserstein Gradient Flows , 2015, SIAM J. Imaging Sci..

[27]  D. Kinderlehrer,et al.  Free energy and the Fokker-Planck equation , 1997 .

[28]  Claire Chainais-Hillairet,et al.  Exponential decay of a finite volume scheme to the thermal equilibrium for drift–diffusion systems , 2016, J. Num. Math..

[29]  Francis Filbet,et al.  A Finite Volume Scheme for Nonlinear Degenerate Parabolic Equations , 2011, SIAM J. Sci. Comput..

[30]  D. Kinderlehrer,et al.  THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .

[31]  Daniil Svyatskiy,et al.  Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes , 2009, J. Comput. Phys..

[32]  Daniil Svyatskiy,et al.  A monotone finite volume method for advection-diffusion equations on unstructured polygonal meshes , 2010, J. Comput. Phys..

[33]  Felix Otto,et al.  L1-Contraction and Uniqueness for Quasilinear Elliptic–Parabolic Equations , 1996 .

[34]  Thierry Gallouët,et al.  Convergence of a finite volume scheme for nonlinear degenerate parabolic equations , 2002, Numerische Mathematik.

[35]  L. Segel,et al.  Model for chemotaxis. , 1971, Journal of theoretical biology.

[36]  Jürgen Fuhrmann,et al.  Guermond : " Theory and Practice of Finite Elements " , 2017 .

[37]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[38]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[39]  Claire Chainais-Hillairet,et al.  ENTROPY-DISSIPATIVE DISCRETIZATION OF NONLINEAR DIFFUSION EQUATIONS AND DISCRETE BECKNER INEQUALITIES ∗ , 2013, 1303.3791.

[40]  S. N. Antont︠s︡ev,et al.  Boundary Value Problems in Mechanics of Nonhomogeneous Fluids , 1990 .

[41]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[42]  Gabriel Peyré,et al.  Iterative Bregman Projections for Regularized Transportation Problems , 2014, SIAM J. Sci. Comput..

[43]  Cl'ement Cances FINITE VOLUME SCHEME FOR TWO-PHASE FLOWS IN HETEROGENEOUS POROUS MEDIA INVOLVING CAPILLARY PRESSURE DISCONTINUITIES , 2009 .

[44]  Giuseppe Savaré,et al.  A new class of transport distances between measures , 2008, 0803.1235.

[45]  Jacques Simeon,et al.  Compact Sets in the Space L~(O, , 2005 .

[46]  Christophe Le Potier Correction non linéaire d'ordre 2 et principe du maximum pour la discrétisation d'opérateurs de diffusion , 2014 .

[47]  Clément Cancès,et al.  Nonlinear Parabolic Equations with Spatial Discontinuities , 2008 .

[48]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[49]  Hailiang Liu,et al.  An Entropy Satisfying Discontinuous Galerkin Method for Nonlinear Fokker–Planck Equations , 2016, J. Sci. Comput..

[50]  Clément Cancès,et al.  On the time continuity of entropy solutions , 2008, 0812.4765.

[51]  Alexander Mielke,et al.  A gradient structure for reaction–diffusion systems and for energy-drift-diffusion systems , 2011 .

[52]  Clément Cancès,et al.  Convergence of a nonlinear entropy diminishing Control Volume Finite Element scheme for solving anisotropic degenerate parabolic equations , 2015, Math. Comput..

[53]  Thierry Gallouët,et al.  Compactness of discrete approximate solutions to parabolic PDEs - Application to a turbulence model , 2012 .

[54]  Jean-Marie Mirebeau,et al.  Sparse Non-negative Stencils for Anisotropic Diffusion , 2013, Journal of Mathematical Imaging and Vision.

[55]  J. Leray,et al.  Topologie et équations fonctionnelles , 1934 .

[56]  M. Agueh Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory. , 2002, math/0309410.

[57]  Boris Andreianov,et al.  Uniqueness for an elliptic-parabolic problem with Neumann boundary condition , 2004 .

[58]  Martin Vohralík,et al.  A combined finite volume–nonconforming/mixed-hybrid finite element scheme for degenerate parabolic problems , 2006, Numerische Mathematik.

[59]  Mark A. Peletier,et al.  Variational modelling : energies, gradient flows, and large deviations , 2014, 1402.1990.

[60]  Ophélie Angelini,et al.  A finite volume method on general meshes for a degenerate parabolic convection–reaction–diffusion equation , 2010, Numerische Mathematik.

[61]  R. Eymard,et al.  Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes , 1998 .

[62]  Clément Cancès,et al.  Entropy-Diminishing CVFE Scheme for Solving Anisotropic Degenerate Diffusion Equations , 2014 .

[63]  Roland Masson,et al.  Vertex-centred discretization of multiphase compositional Darcy flows on general meshes , 2012, Computational Geosciences.

[64]  Roland Masson,et al.  TP or not TP, that is the question , 2014, Computational Geosciences.

[65]  R. Eymard,et al.  3D Benchmark on Discretization Schemes for Anisotropic Diffusion Problems on General Grids , 2008 .

[66]  Ansgar Jüngel,et al.  Entropy Dissipation Methods for Degenerate ParabolicProblems and Generalized Sobolev Inequalities , 2001 .

[67]  Hailiang Liu,et al.  A free energy satisfying finite difference method for Poisson-Nernst-Planck equations , 2013, J. Comput. Phys..

[68]  Luciane A. Schuh,et al.  Discontinuous Galerkin approximation of two-phase flows in heterogeneous porous media with discontinuous capillary pressures , 2010 .

[69]  Raphaèle Herbin,et al.  Benchmark 3D: the VAG scheme , 2011 .

[70]  Daniel Matthes,et al.  Exponential convergence to equilibrium in a coupled gradient flow system modeling chemotaxis , 2013, 1310.3977.

[71]  Zhiqiang Sheng,et al.  The finite volume scheme preserving extremum principle for diffusion equations on polygonal meshes , 2011, J. Comput. Phys..

[72]  Jean-David Benamou,et al.  An augmented Lagrangian approach to Wasserstein gradient flows and applications , 2016 .

[73]  Hailiang Liu,et al.  The Entropy Satisfying Discontinuous Galerkin Method for Fokker–Planck equations , 2015, J. Sci. Comput..

[74]  Peter Knabner,et al.  Error estimates for a mixed finite element discretization of some degenerate parabolic equations , 2008, Numerische Mathematik.

[75]  F. Browder Nonlinear functional analysis , 1970 .

[76]  Boris Andreianov,et al.  Time Compactness Tools for Discretized Evolution Equations and Applications to Degenerate Parabolic PDEs , 2011 .

[77]  Xiang Xu,et al.  A Wasserstein gradient flow approach to Poisson−Nernst−Planck equations , 2015, 1501.04437.

[78]  Clément Cancès,et al.  Monotone corrections for generic cell-centered finite volume approximations of anisotropic diffusion equations , 2013, Numerische Mathematik.

[79]  J. Maas Gradient flows of the entropy for finite Markov chains , 2011, 1102.5238.

[80]  Ayman Moussa,et al.  A nonlinear time compactness result and applications to discretization of degenerate parabolic-elliptic PDEs , 2015, 1504.03891.

[81]  Claire Chainais-Hillairet,et al.  Entropy Method and Asymptotic Behaviours of Finite Volume Schemes , 2014 .

[82]  Thierry Gallouët,et al.  Gradient schemes for the Stefan problem , 2013 .

[83]  Clément Cancès,et al.  Improving Newton's Method Performance by Parametrization: The Case of the Richards Equation , 2017, SIAM J. Numer. Anal..

[84]  Stephan Luckhaus,et al.  Quasilinear elliptic-parabolic differential equations , 1983 .

[85]  Long Chen FINITE VOLUME METHODS , 2011 .

[86]  Clément Cancès,et al.  An Existence Result for Multidimensional Immiscible Two-Phase Flows with Discontinuous Capillary Pressure Field , 2012, SIAM J. Math. Anal..

[87]  José A. Carrillo,et al.  Convergence of the Mass-Transport Steepest Descent Scheme for the Subcritical Patlak-Keller-Segel Model , 2008, SIAM J. Numer. Anal..

[88]  Martin Vohralík,et al.  A combined finite volume–finite element scheme for the discretization of strongly nonlinear convection–diffusion–reaction problems on nonmatching grids , 2009 .

[89]  Marianne Bessemoulin-Chatard Développement et analyse de schémas volumes finis motivés par la présentation de comportements asymptotiques. Application à des modèles issus de la physique et de la biologie , 2012 .

[90]  S. Glotzer,et al.  Time-course gait analysis of hemiparkinsonian rats following 6-hydroxydopamine lesion , 2004, Behavioural Brain Research.

[91]  L. Ambrosio,et al.  A gradient flow approach to an evolution problem arising in superconductivity , 2008 .

[92]  Roland Masson,et al.  Gradient schemes for two‐phase flow in heterogeneous porous media and Richards equation , 2014 .

[93]  Alexandre Ern,et al.  Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes , 2004 .