Numerical Analysis of a Robust Free Energy Diminishing Finite Volume Scheme for Parabolic Equations with Gradient Structure
暂无分享,去创建一个
[1] Daniel Matthes,et al. A Convergent Lagrangian Discretization for a Nonlinear Fourth-Order Equation , 2017, Found. Comput. Math..
[2] S. Lisini. Nonlinear diffusion equations with variable coefficients as gradient flows in Wasserstein spaces , 2009 .
[3] Zhiqiang Sheng,et al. Monotone finite volume schemes for diffusion equations on polygonal meshes , 2008, J. Comput. Phys..
[4] Vivette Girault,et al. Finite elements approximation of second order linear elliptic equations in divergence form with right-hand side in L1 , 2006, Numerische Mathematik.
[5] Roland Masson,et al. Vertex Approximate Gradient Scheme for Hybrid Dimensional Two-Phase Darcy Flows in Fractured Porous Media , 2014 .
[6] Noureddine Igbida,et al. Hele-Shaw type problems with dynamical boundary conditions , 2007 .
[7] L. Ambrosio,et al. Gradient flow of the Chapman–Rubinstein–Schatzman model for signed vortices , 2011 .
[8] Clément Cancès,et al. Finite volume approximation for an immiscible two-phase flow in porous media with discontinuous capillary pressure , 2013, Computational Geosciences.
[9] R. LeVeque. Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .
[10] L. Monsaingeon,et al. The gradient flow structure for incompressible immiscible two-phase flows in porous media , 2015, 1503.01330.
[11] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[12] Bogdan-Vasile Matioc,et al. A gradient flow approach to a thin film approximation of the Muskat problem , 2013 .
[13] Hussein Hoteit,et al. Numerical modeling of two-phase flow in heterogeneous permeable media with different capillarity pressures , 2008 .
[14] Jérôme Droniou,et al. Construction and Convergence Study of Schemes Preserving the Elliptic Local Maximum Principle , 2011, SIAM J. Numer. Anal..
[15] D. Matthes,et al. Convergence of a variational Lagrangian scheme for a nonlinear drift diffusion equation , 2013, 1301.0747.
[16] J. Maas,et al. Gradient flow structures for discrete porous medium equations , 2012, 1212.1129.
[17] Quentin Mérigot,et al. Discretization of functionals involving the Monge–Ampère operator , 2014, Numerische Mathematik.
[18] Adrien Blanchet,et al. A GRADIENT FLOW APPROACH TO THE KELLER-SEGEL SYSTEMS (Progress in Variational Problems : Variational Problems Interacting with Probability Theories) , 2013 .
[19] Arnaud Guillin,et al. Uniform Convergence to Equilibrium for Granular Media , 2012, 1204.4138.
[20] Christophe Le Potier. Correction non linéaire et principe du maximum pour la discrétisation d'opérateurs de diffusion avec des schémas volumes finis centrés sur les mailles , 2010 .
[21] D. Kinderlehrer,et al. Approximation of Parabolic Equations Using the Wasserstein Metric , 1999 .
[22] Raphaèle Herbin,et al. Small-stencil 3D schemes for diffusive flows in porous media , 2012 .
[23] I. V. Kapyrin. A family of monotone methods for the numerical solution of three-dimensional diffusion problems on unstructured tetrahedral meshes , 2007 .
[24] P. G. Ciarlet,et al. Basic error estimates for elliptic problems , 1991 .
[25] Roland Masson,et al. VERTEX CENTRED DISCRETIZATION OF TWO-PHASE DARCY FLOWS ON GENERAL MESHES , 2012 .
[26] Gabriel Peyré,et al. Entropic Approximation of Wasserstein Gradient Flows , 2015, SIAM J. Imaging Sci..
[27] D. Kinderlehrer,et al. Free energy and the Fokker-Planck equation , 1997 .
[28] Claire Chainais-Hillairet,et al. Exponential decay of a finite volume scheme to the thermal equilibrium for drift–diffusion systems , 2016, J. Num. Math..
[29] Francis Filbet,et al. A Finite Volume Scheme for Nonlinear Degenerate Parabolic Equations , 2011, SIAM J. Sci. Comput..
[30] D. Kinderlehrer,et al. THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .
[31] Daniil Svyatskiy,et al. Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes , 2009, J. Comput. Phys..
[32] Daniil Svyatskiy,et al. A monotone finite volume method for advection-diffusion equations on unstructured polygonal meshes , 2010, J. Comput. Phys..
[33] Felix Otto,et al. L1-Contraction and Uniqueness for Quasilinear Elliptic–Parabolic Equations , 1996 .
[34] Thierry Gallouët,et al. Convergence of a finite volume scheme for nonlinear degenerate parabolic equations , 2002, Numerische Mathematik.
[35] L. Segel,et al. Model for chemotaxis. , 1971, Journal of theoretical biology.
[36] Jürgen Fuhrmann,et al. Guermond : " Theory and Practice of Finite Elements " , 2017 .
[37] J. Simon. Compact sets in the spaceLp(O,T; B) , 1986 .
[38] L. Ambrosio,et al. Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .
[39] Claire Chainais-Hillairet,et al. ENTROPY-DISSIPATIVE DISCRETIZATION OF NONLINEAR DIFFUSION EQUATIONS AND DISCRETE BECKNER INEQUALITIES ∗ , 2013, 1303.3791.
[40] S. N. Antont︠s︡ev,et al. Boundary Value Problems in Mechanics of Nonhomogeneous Fluids , 1990 .
[41] F. Otto. THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .
[42] Gabriel Peyré,et al. Iterative Bregman Projections for Regularized Transportation Problems , 2014, SIAM J. Sci. Comput..
[43] Cl'ement Cances. FINITE VOLUME SCHEME FOR TWO-PHASE FLOWS IN HETEROGENEOUS POROUS MEDIA INVOLVING CAPILLARY PRESSURE DISCONTINUITIES , 2009 .
[44] Giuseppe Savaré,et al. A new class of transport distances between measures , 2008, 0803.1235.
[45] Jacques Simeon,et al. Compact Sets in the Space L~(O, , 2005 .
[46] Christophe Le Potier. Correction non linéaire d'ordre 2 et principe du maximum pour la discrétisation d'opérateurs de diffusion , 2014 .
[47] Clément Cancès,et al. Nonlinear Parabolic Equations with Spatial Discontinuities , 2008 .
[48] Yann Brenier,et al. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.
[49] Hailiang Liu,et al. An Entropy Satisfying Discontinuous Galerkin Method for Nonlinear Fokker–Planck Equations , 2016, J. Sci. Comput..
[50] Clément Cancès,et al. On the time continuity of entropy solutions , 2008, 0812.4765.
[51] Alexander Mielke,et al. A gradient structure for reaction–diffusion systems and for energy-drift-diffusion systems , 2011 .
[52] Clément Cancès,et al. Convergence of a nonlinear entropy diminishing Control Volume Finite Element scheme for solving anisotropic degenerate parabolic equations , 2015, Math. Comput..
[53] Thierry Gallouët,et al. Compactness of discrete approximate solutions to parabolic PDEs - Application to a turbulence model , 2012 .
[54] Jean-Marie Mirebeau,et al. Sparse Non-negative Stencils for Anisotropic Diffusion , 2013, Journal of Mathematical Imaging and Vision.
[55] J. Leray,et al. Topologie et équations fonctionnelles , 1934 .
[56] M. Agueh. Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory. , 2002, math/0309410.
[57] Boris Andreianov,et al. Uniqueness for an elliptic-parabolic problem with Neumann boundary condition , 2004 .
[58] Martin Vohralík,et al. A combined finite volume–nonconforming/mixed-hybrid finite element scheme for degenerate parabolic problems , 2006, Numerische Mathematik.
[59] Mark A. Peletier,et al. Variational modelling : energies, gradient flows, and large deviations , 2014, 1402.1990.
[60] Ophélie Angelini,et al. A finite volume method on general meshes for a degenerate parabolic convection–reaction–diffusion equation , 2010, Numerische Mathematik.
[61] R. Eymard,et al. Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes , 1998 .
[62] Clément Cancès,et al. Entropy-Diminishing CVFE Scheme for Solving Anisotropic Degenerate Diffusion Equations , 2014 .
[63] Roland Masson,et al. Vertex-centred discretization of multiphase compositional Darcy flows on general meshes , 2012, Computational Geosciences.
[64] Roland Masson,et al. TP or not TP, that is the question , 2014, Computational Geosciences.
[65] R. Eymard,et al. 3D Benchmark on Discretization Schemes for Anisotropic Diffusion Problems on General Grids , 2008 .
[66] Ansgar Jüngel,et al. Entropy Dissipation Methods for Degenerate ParabolicProblems and Generalized Sobolev Inequalities , 2001 .
[67] Hailiang Liu,et al. A free energy satisfying finite difference method for Poisson-Nernst-Planck equations , 2013, J. Comput. Phys..
[68] Luciane A. Schuh,et al. Discontinuous Galerkin approximation of two-phase flows in heterogeneous porous media with discontinuous capillary pressures , 2010 .
[69] Raphaèle Herbin,et al. Benchmark 3D: the VAG scheme , 2011 .
[70] Daniel Matthes,et al. Exponential convergence to equilibrium in a coupled gradient flow system modeling chemotaxis , 2013, 1310.3977.
[71] Zhiqiang Sheng,et al. The finite volume scheme preserving extremum principle for diffusion equations on polygonal meshes , 2011, J. Comput. Phys..
[72] Jean-David Benamou,et al. An augmented Lagrangian approach to Wasserstein gradient flows and applications , 2016 .
[73] Hailiang Liu,et al. The Entropy Satisfying Discontinuous Galerkin Method for Fokker–Planck equations , 2015, J. Sci. Comput..
[74] Peter Knabner,et al. Error estimates for a mixed finite element discretization of some degenerate parabolic equations , 2008, Numerische Mathematik.
[75] F. Browder. Nonlinear functional analysis , 1970 .
[76] Boris Andreianov,et al. Time Compactness Tools for Discretized Evolution Equations and Applications to Degenerate Parabolic PDEs , 2011 .
[77] Xiang Xu,et al. A Wasserstein gradient flow approach to Poisson−Nernst−Planck equations , 2015, 1501.04437.
[78] Clément Cancès,et al. Monotone corrections for generic cell-centered finite volume approximations of anisotropic diffusion equations , 2013, Numerische Mathematik.
[79] J. Maas. Gradient flows of the entropy for finite Markov chains , 2011, 1102.5238.
[80] Ayman Moussa,et al. A nonlinear time compactness result and applications to discretization of degenerate parabolic-elliptic PDEs , 2015, 1504.03891.
[81] Claire Chainais-Hillairet,et al. Entropy Method and Asymptotic Behaviours of Finite Volume Schemes , 2014 .
[82] Thierry Gallouët,et al. Gradient schemes for the Stefan problem , 2013 .
[83] Clément Cancès,et al. Improving Newton's Method Performance by Parametrization: The Case of the Richards Equation , 2017, SIAM J. Numer. Anal..
[84] Stephan Luckhaus,et al. Quasilinear elliptic-parabolic differential equations , 1983 .
[85] Long Chen. FINITE VOLUME METHODS , 2011 .
[86] Clément Cancès,et al. An Existence Result for Multidimensional Immiscible Two-Phase Flows with Discontinuous Capillary Pressure Field , 2012, SIAM J. Math. Anal..
[87] José A. Carrillo,et al. Convergence of the Mass-Transport Steepest Descent Scheme for the Subcritical Patlak-Keller-Segel Model , 2008, SIAM J. Numer. Anal..
[88] Martin Vohralík,et al. A combined finite volume–finite element scheme for the discretization of strongly nonlinear convection–diffusion–reaction problems on nonmatching grids , 2009 .
[89] Marianne Bessemoulin-Chatard. Développement et analyse de schémas volumes finis motivés par la présentation de comportements asymptotiques. Application à des modèles issus de la physique et de la biologie , 2012 .
[90] S. Glotzer,et al. Time-course gait analysis of hemiparkinsonian rats following 6-hydroxydopamine lesion , 2004, Behavioural Brain Research.
[91] L. Ambrosio,et al. A gradient flow approach to an evolution problem arising in superconductivity , 2008 .
[92] Roland Masson,et al. Gradient schemes for two‐phase flow in heterogeneous porous media and Richards equation , 2014 .
[93] Alexandre Ern,et al. Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes , 2004 .