Bootstrap Multigrid for the Shifted Laplace-Beltrami Eigenvalue Problem

This paper introduces bootstrap two-grid and multigrid finite element approximations to the Laplace-Beltrami (surface Laplacian) eigen-problem on a closed surface. The proposed multigrid method is suitable for recovering eigenvalues having large multiplicity, computing interior eigenvalues, and approximating the shifted indefinite eigen-problem. Convergence analysis is carried out for a simplified two-grid algorithm and numerical experiments are presented to illustrate the basic components and ideas behind the overall bootstrap multigrid approach.

[1]  I. Chavel Eigenvalues in Riemannian geometry , 1984 .

[2]  J. Dodziuk Finite-difference approach to the Hodge theory of harmonic forms , 1976 .

[3]  S. Yau,et al.  Lectures on Differential Geometry , 1994 .

[4]  Tony F. Chan,et al.  Subspace correction multi-level methods for elliptic eigenvalue problems , 2002, Numer. Linear Algebra Appl..

[5]  Maxim A. Olshanskii,et al.  A finite element method for surface PDEs: matrix properties , 2009, Numerische Mathematik.

[6]  Long Chen,et al.  Superconvergence and Gradient Recovery of Linear Finite Elements for the Laplace-Beltrami Operator on General Surfaces , 2010, SIAM J. Numer. Anal..

[7]  G. Dziuk Finite Elements for the Beltrami operator on arbitrary surfaces , 1988 .

[8]  Charles M. Elliott,et al.  Finite element methods for surface PDEs* , 2013, Acta Numerica.

[9]  Jinchao Xu,et al.  A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..

[10]  Thierry Aubin,et al.  Some Nonlinear Problems in Riemannian Geometry , 1998 .

[11]  Mats G. Larson,et al.  A Posteriori and a Priori Error Analysis for Finite Element Approximations of Self-Adjoint Elliptic Eigenvalue Problems , 2000, SIAM J. Numer. Anal..

[12]  S. McCormick,et al.  Multigrid Methods for Nearly Singular Linear Equations and Eigenvalue Problems , 1997 .

[13]  I. Babuska,et al.  Finite element-galerkin approximation of the eigenvalues and Eigenvectors of selfadjoint problems , 1989 .

[14]  X. Hu,et al.  Two-Grid Methods for Maxwell Eigenvalue Problems , 2014, SIAM J. Numer. Anal..

[15]  Andrey B. Andreev,et al.  Superconvergence Postprocessing for Eigenvalues , 2002 .

[16]  Ricardo G. Durán,et al.  A Posteriori Error Estimates for the Finite Element Approximation of Eigenvalue Problems , 2003 .

[17]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[18]  Alan Demlow,et al.  An Adaptive Finite Element Method for the Laplace-Beltrami Operator on Implicitly Defined Surfaces , 2007, SIAM J. Numer. Anal..

[19]  James J. Brannick,et al.  Bootstrap Algebraic Multigrid for the 2D Wilson Dirac system , 2013, SIAM J. Sci. Comput..

[20]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[21]  Daniele Boffi,et al.  Finite element approximation of eigenvalue problems , 2010, Acta Numerica.

[22]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[23]  Achi Brandt,et al.  Bootstrap AMG , 2011, SIAM J. Sci. Comput..

[24]  Xiaozhe Hu,et al.  Corrigendum to: "Acceleration of a two-grid method for eigenvalue problems" , 2011, Math. Comput..

[25]  Hehu Xie,et al.  A multi-level correction scheme for eigenvalue problems , 2011, Math. Comput..

[26]  Per-Olof Persson,et al.  A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..

[27]  E. Hobson The Theory of Spherical and Ellipsoidal Harmonics , 1955 .