Noninvasive Deep Brain Stimulation via Temporally Interfering Electric Fields

[1]  L. W. Alvarez Development of variable- focus lenses and a new refractor. , 1978, Journal of the American Optometric Association.

[2]  M. Dragunow,et al.  Kindling stimulation induces c-fos protein(s) in granule cells of the rat dentate gyrus , 1987, Nature.

[3]  The invention and early manufacture of bifocals. , 1990, Survey of ophthalmology.

[4]  T Pietsch,et al.  NeuN: a useful neuronal marker for diagnostic histopathology. , 1996, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[5]  Y. Fukuuchi,et al.  Microglia-specific localisation of a novel calcium binding protein, Iba1. , 1998, Brain research. Molecular brain research.

[6]  G. Love,et al.  Control optimization of spherical modal liquid crystal lenses. , 1999, Optics express.

[7]  Y. Yarom,et al.  Resonance, oscillation and the intrinsic frequency preferences of neurons , 2000, Trends in Neurosciences.

[8]  Y. Goda,et al.  Synaptophysin regulates activity-dependent synapse formation in cultured hippocampal neurons , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[9]  S. Lord,et al.  Multifocal Glasses Impair Edge‐Contrast Sensitivity and Depth Perception and Increase the Risk of Falls in Older People , 2002, Journal of the American Geriatrics Society.

[10]  Ralph B Dell,et al.  Sample size determination. , 2002, ILAR journal.

[11]  Li-Huei Tsai,et al.  Aberrant Cdk5 Activation by p25 Triggers Pathological Events Leading to Neurodegeneration and Neurofibrillary Tangles , 2003, Neuron.

[12]  Peter Stavroulakis,et al.  Biological effects of electromagnetic fields : mechanisms, modeling, biological effects, therapeutic effects, international standards, exposure criteria , 2003 .

[13]  Donald O. Mutti Introduction to the Optics of the Eye , 2003 .

[14]  L. Eng,et al.  Glial Fibrillary Acidic Protein: GFAP-Thirty-One Years (1969–2000) , 2000, Neurochemical Research.

[15]  Shin‐Tson Wu,et al.  Variable-focus liquid lens by changing aperture , 2005 .

[16]  Daniel R. Merrill,et al.  Electrical stimulation of excitable tissue: design of efficacious and safe protocols , 2005, Journal of Neuroscience Methods.

[17]  Shin‐Tson Wu,et al.  Tunable-focus liquid lens controlled using a servo motor. , 2006, Optics express.

[18]  Georg Neubauer,et al.  Development of novel whole-body exposure setups for rats providing high efficiency, National Toxicology Program (NTP) compatibility and well-characterized exposure , 2006, Physics in medicine and biology.

[19]  Mark Mayford,et al.  Localization of a Stable Neural Correlate of Associative Memory , 2007, Science.

[20]  D. Elliott,et al.  Multifocal spectacles increase variability in toe clearance and risk of tripping in the elderly. , 2007, Investigative ophthalmology & visual science.

[21]  Shin-Tson Wu,et al.  Liquid crystal lens with large focal length tunability and low operating voltage. , 2007, Optics express.

[22]  M. Kringelbach,et al.  Translational principles of deep brain stimulation , 2007, Nature Reviews Neuroscience.

[23]  P. L. Peng,et al.  Deregulation of HDAC1 by p25/Cdk5 in Neurotoxicity , 2008, Neuron.

[24]  Serge Resnikoff,et al.  Global magnitude of visual impairment caused by uncorrected refractive errors in 2004. , 2008, Bulletin of the World Health Organization.

[25]  Murtaza Z Mogri,et al.  Optical Deconstruction of Parkinsonian Neural Circuitry , 2009, Science.

[26]  R. Reid,et al.  Direct Activation of Sparse, Distributed Populations of Cortical Neurons by Electrical Microstimulation , 2009, Neuron.

[27]  A. El-Osta,et al.  γH2AX: a sensitive molecular marker of DNA damage and repair , 2010, Leukemia.

[28]  K. Jokela,et al.  ICNIRP Guidelines GUIDELINES FOR LIMITING EXPOSURE TO TIME-VARYING , 1998 .

[29]  Samuel Rosset,et al.  Array of lenses with individually tunable focal-length based on transparent ion-implanted EAPs , 2010, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[30]  G. Friehs,et al.  Deep brain stimulation of the ventral internal capsule/ventral striatum for obsessive-compulsive disorder: worldwide experience , 2010, Molecular Psychiatry.

[31]  C. Peratta,et al.  Modelling the Human Body Exposure to ELF Electric Fields. , 2010, Medical physics.

[32]  Walter J. Riker A Review of J , 2010 .

[33]  J. Kleim,et al.  The organization of the forelimb representation of the C57BL/6 mouse motor cortex as defined by intracortical microstimulation and cytoarchitecture. , 2011, Cerebral cortex.

[34]  D. De Rossi,et al.  Bioinspired Tunable Lens with Muscle‐Like Electroactive Elastomers , 2011 .

[35]  Walter Paulus,et al.  Transcranial alternating current stimulation in the low kHz range increases motor cortex excitability. , 2011, Restorative neurology and neuroscience.

[36]  Suhasa B. Kodandaramaiah,et al.  Automated whole-cell patch clamp electrophysiology of neurons in vivo , 2012, Nature Methods.

[37]  F. Cecconi,et al.  Caspase-3 in the central nervous system: beyond apoptosis , 2012, Trends in Neurosciences.

[38]  E. Neufeld,et al.  IT’IS Database for Thermal and Electromagnetic Parameters of Biological Tissues , 2012 .

[39]  Giulio Ruffini,et al.  The electric field in the cortex during transcranial current stimulation , 2013, NeuroImage.

[40]  D. Clarke,et al.  Tunable lenses using transparent dielectric elastomer actuators. , 2013, Optics express.

[41]  Konstantinos Alataris,et al.  Effect of High‐Frequency Alternating Current on Spinal Afferent Nociceptive Transmission , 2013, Neuromodulation : journal of the International Neuromodulation Society.

[42]  Akhlesh Lakhtakia Microlenses: Properties, Fabrication and Liquid Lenses , 2013 .

[43]  Suneil K. Kalia,et al.  Parkinson hastalığı ve diğer hareket bozuklukları için derin beyin stimülasyonu , 2013 .

[44]  L. Tsai,et al.  SIRT1 collaborates with ATM and HDAC1 to maintain genomic stability in neurons , 2013, Nature Neuroscience.

[45]  Tejas Sankar,et al.  Deep brain stimulation for Parkinson's disease and other movement disorders. , 2013, Current opinion in neurology.

[46]  A. Williams,et al.  Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans , 2014, Nature Neuroscience.

[47]  S. Shoham,et al.  Intramembrane Cavitation as a Predictive Bio-Piezoelectric Mechanism for Ultrasonic Brain Stimulation , 2013, 1307.7701.

[48]  K. Kilgore,et al.  Reversible Nerve Conduction Block Using Kilohertz Frequency Alternating Current , 2014, Neuromodulation : journal of the International Neuromodulation Society.

[49]  Polina Anikeeva,et al.  Wireless magnetothermal deep brain stimulation , 2015, Science.

[50]  Hanseup Kim,et al.  Large aperture tunable-focus liquid lens using shape memory alloy spring. , 2016, Optics express.

[51]  Alexander Opitz,et al.  5 kHz Transcranial Alternating Current Stimulation: Lack of Cortical Excitability Changes When Grouped in a Theta Burst Pattern , 2017, Front. Hum. Neurosci..

[52]  L. W. Alvarez TWO-ELEMENT WARIABLE-POWER SPHERICAL LENS , 2017 .