Perspectives on the mitochondrial multiple conductance channel

[1]  R. Murphy,et al.  Activity of the Mitochondrial Multiple Conductance Channel Is Independent of the Adenine Nucleotide Translocator (*) , 1996, The Journal of Biological Chemistry.

[2]  K. Kinnally,et al.  Targeting Peptides Transiently Block a Mitochondrial Channel (*) , 1995, The Journal of Biological Chemistry.

[3]  K. Kinnally,et al.  Multiple conductance channel activity of wild-type and voltage-dependent anion-selective channel (VDAC)-less yeast mitochondria. , 1995, Biophysical journal.

[4]  M. Zoratti,et al.  The high-conductance channel of porin-less yeast mitochondria. , 1995, Biochimica et Biophysica Acta.

[5]  S. Snyder,et al.  Immunophilin FK506 binding protein associated with inositol 1,4,5-trisphosphate receptor modulates calcium flux. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[6]  M. Gunner,et al.  Volume contraction on photoexcitation of the reaction center from Rhodobacter sphaeroides R-26: internal probe of dielectrics. , 1995, Biophysical journal.

[7]  J. Hoek,et al.  Protoporphyrin IX, an endogenous ligand of the peripheral benzodiazepine receptor, potentiates induction of the mitochondrial permeability transition and the killing of cultured hepatocytes by rotenone. , 1994, The Journal of biological chemistry.

[8]  D. Mak,et al.  Single-channel inositol 1,4,5-trisphosphate receptor currents revealed by patch clamp of isolated Xenopus oocyte nuclei. , 1994, The Journal of biological chemistry.

[9]  M. Zoratti,et al.  Electrophysiology of the inner mitochondrial membrane , 1994, Journal of bioenergetics and biomembranes.

[10]  P. Bernardi,et al.  Recent progress on regulation of the mitochondrial permeability transition pore; a cyclosporin-sensitive pore in the inner mitochondrial membrane , 1994, Journal of bioenergetics and biomembranes.

[11]  R. Sauvé,et al.  Analysis of a novel double-barreled anion channel from rat liver rough endoplasmic reticulum. , 1994, Biophysical journal.

[12]  K. Gunter,et al.  Mitochondrial calcium transport: physiological and pathological relevance. , 1994, The American journal of physiology.

[13]  P. M. Sokolove,et al.  The mitochondrial permeability transition. Interactions of spermine, ADP, and inorganic phosphate. , 1994, The Journal of biological chemistry.

[14]  J. Mazat,et al.  Mitochondrial calcium spiking: A transduction mechanism based on calcium‐induced permeability transition involved in cell calcium signalling , 1994, FEBS letters.

[15]  C. Weaver,et al.  Nodulin 26, a nodule-specific symbiosome membrane protein from soybean, is an ion channel. , 1994, The Journal of biological chemistry.

[16]  M. Colombini,et al.  Molecular Biology of Mitochondrial Transport Systems , 1994, NATO ASI Series.

[17]  R. Benz,et al.  Permeation of hydrophilic solutes through mitochondrial outer membranes: review on mitochondrial porins. , 1994, Biochimica et biophysica acta.

[18]  L. Scorrano,et al.  The voltage sensor of the mitochondrial permeability transition pore is tuned by the oxidation-reduction state of vicinal thiols. Increase of the gating potential by oxidants and its reversal by reducing agents. , 1994, The Journal of biological chemistry.

[19]  J. Henry,et al.  Reversible and irreversible effects of basic peptides on the mitochondrial cationic channel. , 1994, Biophysical journal.

[20]  V. Teplova,et al.  The Ca2+-induced permeability transition pore is involved in Ca2+-induced mitochondrial oscillations: A study on permeabilised Ehrlich ascites tumour cells , 1994 .

[21]  A. Beavis A Channel Model to Explain Regulation of the Mitochondrial Inner Membrane Anion Channel (IMAC) , 1994 .

[22]  V. Gogvadze,et al.  Cyclosporine A protects mitochondria in an in vitro model of hypoxia/reperfusion injury , 1993, FEBS letters.

[23]  T. Pozzan,et al.  Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. , 1993, Science.

[24]  M. Zoratti,et al.  The mitochondrial permeability transition pore may comprise VDAC molecules , 1993, FEBS letters.

[25]  J. Farber,et al.  Cyclosporin and carnitine prevent the anoxic death of cultured hepatocytes by inhibiting the mitochondrial permeability transition. , 1993, The Journal of biological chemistry.

[26]  S. Snyder,et al.  Mitochondrial benzodiazepine receptor linked to inner membrane ion channels by nanomolar actions of ligands. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[27]  M. Sorgato,et al.  Channels in mitochondrial membranes: knowns, unknowns, and prospects for the future. , 1993, Critical reviews in biochemistry and molecular biology.

[28]  G. Blobel,et al.  Signal peptides open protein-conducting channels in E. coli , 1992, Cell.

[29]  K. Kinnally,et al.  The effect of antimycin A on mouse liver inner mitochondrial membrane channel activity. , 1992, The Journal of biological chemistry.

[30]  S. Snyder,et al.  Isolation of the mitochondrial benzodiazepine receptor: association with the voltage-dependent anion channel and the adenine nucleotide carrier. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[31]  D. Zorov,et al.  Multiple conductance levels in rat heart inner mitochondrial membranes studied by patch clamping. , 1992, Biochimica et biophysica acta.

[32]  M. Zoratti,et al.  Modulation of the mitochondrial megachannel by divalent cations and protons. , 1992, The Journal of biological chemistry.

[33]  M. Zoratti,et al.  Modulation of the mitochondrial permeability transition pore. Effect of protons and divalent cations. , 1992, The Journal of biological chemistry.

[34]  T. Ozawa,et al.  BENEFICIAL EFFECTS OF CYCLOSPORINE ON POSTISCHEMIC LIVER INJURY IN RATS , 1992, Transplantation.

[35]  A. Martínez-Serrano,et al.  Regulation of cytosolic free calcium concentration by intrasynaptic mitochondria. , 1992, Molecular biology of the cell.

[36]  Y. Antonenko,et al.  Modulation of inner mitochondrial membrane channel activity , 1992, Journal of bioenergetics and biomembranes.

[37]  D. Zorov,et al.  Voltage activation of heart inner mitochondrial membrane channels , 1992, Journal of bioenergetics and biomembranes.

[38]  M. McEnery,et al.  The mitochondrial benzodiazepine receptor: Evidence for association with the voltage-dependent anion channel (VDAC) , 1992, Journal of bioenergetics and biomembranes.

[39]  M. Zoratti,et al.  The mitochondrial megachannel is the permeability transition pore , 1992, Journal of bioenergetics and biomembranes.

[40]  U. Igbavboa,et al.  Transient induction of the mitochondrial permeability transition by uncoupler plus a Ca(2+)-specific chelator. , 1991, Biochimica et biophysica acta.

[41]  Y. Antonenko,et al.  Selective effect of inhibitors on inner mitochondrial membrane channels , 1991, FEBS letters.

[42]  Y. Antonenko,et al.  Calcium modulation of mitochondrial inner membrane channel activity. , 1991, Biochemical and biophysical research communications.

[43]  G. Blobel,et al.  A protein-conducting channel in the endoplasmic reticulum , 1991, Cell.

[44]  M. Zoratti,et al.  The giant channel of the inner mitochondrial membrane is inhibited by cyclosporin A. , 1991, The Journal of biological chemistry.

[45]  J. Henry,et al.  A peptide-sensitive channel of large conductance is localized on mitochondrial outer membrane. , 1991, European journal of biochemistry.

[46]  R. Moreno-Sánchez,et al.  Release of Ca2+ from heart and kidney mitochondria by peripheral-type benzodiazepine receptor ligands. , 1991, The International journal of biochemistry.

[47]  A. Vercesi,et al.  Membrane protein thiol cross-linking associated with the permeabilization of the inner mitochondrial membrane by Ca2+ plus prooxidants. , 1990, The Journal of biological chemistry.

[48]  T. Gunter,et al.  Mechanisms by which mitochondria transport calcium. , 1990, The American journal of physiology.

[49]  W. Stühmer,et al.  Electrophysiological characterization of contact sites in brain mitochondria. , 1990, The Journal of biological chemistry.

[50]  M. Zoratti,et al.  The inner mitochondrial membrane contains ion‐conducting channels similar to those found in bacteria , 1989, FEBS letters.

[51]  K. Kinnally,et al.  Mitochondrial channel activity studied by patch-clamping mitoplasts , 1989, Journal of bioenergetics and biomembranes.

[52]  C. Zwizinski,et al.  Release of mitochondrial matrix proteins through a Ca2+-requiring, cyclosporin-sensitive pathway. , 1989, Biochemical and biophysical research communications.

[53]  M. Crompton,et al.  Kinetic evidence for a heart mitochondrial pore activated by Ca2+, inorganic phosphate and oxidative stress. A potential mechanism for mitochondrial dysfunction during cellular Ca2+ overload. , 1988, European journal of biochemistry.

[54]  E. Panfili,et al.  Influence of Ca2+ on the isolation from rat brain mitochondria of a fraction enriched of boundary membrane contact sites. , 1988, Cell calcium.

[55]  J. Henry,et al.  Incorporation in lipid bilayers of a large conductance cationic channel from mitochondrial membranes. , 1988, The EMBO journal.

[56]  W. Stühmer,et al.  Patch-clamping of the inner mitochondrial membrane reveals a voltage-dependent ion channel , 1987, Nature.

[57]  C Kung,et al.  Pressure-sensitive ion channel in Escherichia coli. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[58]  M. Colombini Voltage Gating in VDAC , 1986 .

[59]  Christopher Miller,et al.  Ion Channel Reconstitution , 1986, Springer US.

[60]  T. Last,et al.  Ion-gated channel induced in planar bilayers by incorporation of (Na+,K+)-ATPase. , 1983, The Journal of biological chemistry.

[61]  P. Gazzotti The effect of Ca2+ on the oxidation of exogenous NADH by rat liver mitochondria. , 1975, Biochemical and biophysical research communications.

[62]  H. Kaback,et al.  Mechanisms of active transport in isolated bacterial membrane vesicles. 18. The mechanism of action of carbonylcyanide m-chlorophenylhydrazone. , 1974, Archives of biochemistry and biophysics.

[63]  E. C. Slater The mechanism of action of the respiratory inhibitor, antimycin. , 1973, Biochimica et biophysica acta.

[64]  G. Azzone,et al.  The equivalent pore radius of intact and damaged mitochondria and the mechanism of active shrinkage. , 1972, Biochimica et biophysica acta.

[65]  W. Prichard,et al.  A new class of uncoupling agents--carbonyl cyanide phenylhydrazones. , 1962, Biochemical and biophysical research communications.