Judgment Aggregation in Dynamic Logic of Propositional Assignments

Judgment aggregation models a group of agents having to collectively decide over a number of logically interconnected issues starting from their individual opinions. In recent years, a growing literature has focused on the design of logical systems for social choice theory, and for judgment aggregation in particular, making use of logical languages designed ad hoc for this purpose. In this paper we deploy the existing formalism of Dynamic Logic of Propositional Assignments (DL-PA), an instance of Propositional Dynamic Logic where atomic programs affect propositional valuations. We show that DL-PA is a well-suited formalism for modeling the aggregation of binary judgments from multiple agents, by providing logical equivalences in DL-PA for some of the best-known aggregation procedures, desirable axioms coming from the literature on judgment aggregation and properties for the safety of the agenda problem.

[1]  Marc Pauly,et al.  Axiomatizing collective judgment sets in a minimal logical language , 2007, Synthese.

[2]  Andreas Herzig,et al.  Belief Change Operations: A Short History of Nearly Everything, Told in Dynamic Logic of Propositional Assignments , 2014, KR.

[3]  Felix Brandt,et al.  Proving the Incompatibility of Efficiency and Strategyproofness via SMT Solving , 2016, IJCAI.

[4]  Michael Wooldridge,et al.  Reasoning About Social Choice Functions , 2011, J. Philos. Log..

[5]  Mark B. Wells Generation of permutations by transposition , 1961 .

[6]  Tobias Nipkow,et al.  Social Choice Theory in HOL , 2009, Journal of Automated Reasoning.

[7]  F. Dietrich,et al.  Judgment Aggregation By Quota Rules , 2007 .

[8]  Marcus Pivato,et al.  Condorcet admissibility: Indeterminacy and path-dependence under majority voting on interconnected decisions , 2011 .

[9]  U. Endriss Logic and Social Choice Theory , 2011 .

[10]  Emiliano Lorini,et al.  A Dynamic Logic of Normative Systems , 2011, IJCAI.

[11]  Kenneth O. May,et al.  A Set of Independent Necessary and Sufficient Conditions for Simple Majority Decision , 1952 .

[12]  Daniele Porello,et al.  Judgment aggregation in non-classical logics , 2017, ArXiv.

[13]  S. Shapiro,et al.  Mathematics without Numbers , 1993 .

[14]  Nicolas Troquard Logics of social choice and perspectives on their software implementation ( accompanying notes for the Schloss Dagstuhl , 2011 .

[15]  Lawrence G. Sager,et al.  The One and the Many: Adjudication in Collegial Courts , 1993 .

[16]  Christian List,et al.  Judgment aggregation without full rationality , 2008, Soc. Choice Welf..

[17]  Philippe Balbiani,et al.  Propositional Dynamic Logic , 2007 .

[18]  Jerusa Marchi,et al.  Prime forms and minimal change in propositional belief bases , 2010, Annals of Mathematics and Artificial Intelligence.

[19]  Gabriella Pigozzi,et al.  Judgment Aggregation: A Primer , 2014, Judgment Aggregation.

[20]  Ulrich Endriss,et al.  Judgment Aggregation under Issue Dependencies , 2016, AAAI.

[21]  Umberto Grandi,et al.  Binary Aggregation with Integrity Constraints , 2011, IJCAI.

[22]  Ulrich Endriss,et al.  Proving classical theorems of social choice theory in modal logic , 2016, Autonomous Agents and Multi-Agent Systems.

[23]  Christian List,et al.  STRATEGY-PROOF JUDGMENT AGGREGATION* , 2005, Economics and Philosophy.

[24]  Fangzhen Lin,et al.  Computer-Aided Proofs of Arrow's and Other Impossibility Theorems , 2008, AAAI.

[25]  Andreas Herzig,et al.  A Dynamic Logic Framework for Abstract Argumentation , 2014, KR.

[26]  Marija Slavkovik,et al.  How Hard is it to Compute Majority-Preserving Judgment Aggregation Rules? , 2014, ECAI.

[27]  Gabriella Pigozzi,et al.  Judgment aggregation rules based on minimization , 2011, TARK XIII.

[28]  L. A. Goodman,et al.  Social Choice and Individual Values , 1951 .

[29]  Ulrich Endriss,et al.  Automated Search for Impossibility Theorems in Social Choice Theory: Ranking Sets of Objects , 2014, J. Artif. Intell. Res..

[30]  Jerry S. Kelly,et al.  Arrow’s Impossibility Theorem , 1988 .

[31]  F. Dietrich,et al.  Propositionwise judgment aggregation , 2009 .

[32]  Emiliano Lorini,et al.  Announcements to Attentive Agents , 2016, J. Log. Lang. Inf..

[33]  Ron Holzman,et al.  Aggregation of binary evaluations for truth-functional agendas , 2009, Soc. Choice Welf..

[34]  Ulrich Endriss,et al.  A Syntactic Proof of Arrow's Theorem in a Modal Logic of Social Choice Functions , 2015, AAMAS.

[35]  Richard E. Ladner,et al.  Propositional Dynamic Logic of Regular Programs , 1979, J. Comput. Syst. Sci..

[36]  Andreas Herzig,et al.  Dynamic Logic of Propositional Assignments: A Well-Behaved Variant of PDL , 2013, 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science.

[37]  Tobias Nipkow,et al.  Social Choice Theory in HOL Arrow and Gibbard-Satterthwaite , 2009 .

[38]  Andreas Herzig,et al.  Belief Merging in Dynamic Logic of Propositional Assignments , 2014, FoIKS.

[39]  Michael Wooldridge,et al.  On the logic of preference and judgment aggregation , 2009, Autonomous Agents and Multi-Agent Systems.

[40]  Felix Brandt,et al.  Optimal Bounds for the No-Show Paradox via SAT Solving , 2016, AAMAS.

[41]  Ulrich Endriss,et al.  UvA-DARE ( Digital Academic Repository ) First-Order Logic Formalisation of Impossibility Theorems in Preference Aggregation , 2013 .

[42]  P. Mongin Judgment Aggregation , 2011 .

[43]  Christian List,et al.  The theory of judgment aggregation: an introductory review , 2012, Synthese.

[44]  Felix Brandt,et al.  Finding strategyproof social choice functions via SAT solving , 2014, AAMAS.

[45]  Richard Spencer-Smith,et al.  Modal Logic , 2007 .

[46]  Ulrich Endriss,et al.  Binary Aggregation by Selection of the Most Representative Voters , 2014, AAAI.

[47]  K. Arrow,et al.  Handbook of Social Choice and Welfare , 2011 .

[48]  Daniel N. Osherson,et al.  Methods for distance-based judgment aggregation , 2009, Soc. Choice Welf..

[49]  Ulrich Endriss,et al.  Complexity of Judgment Aggregation , 2012, J. Artif. Intell. Res..

[50]  Franz Dietrich,et al.  Judgment aggregation: (im)possibility theorems , 2006, J. Econ. Theory.

[51]  Ulrich Endriss,et al.  Succinctness of Languages for Judgment Aggregation , 2016, KR.

[52]  Tin Perkov,et al.  Natural Deduction for Modal Logic of Judgment Aggregation , 2016, J. Log. Lang. Inf..

[53]  Pierre Marquis,et al.  Consequence Finding Algorithms , 2000 .

[54]  F. Brandt,et al.  Computational Social Choice: Prospects and Challenges , 2011, FET.

[55]  C. List,et al.  Aggregating Sets of Judgments: An Impossibility Result , 2002, Economics and Philosophy.

[56]  C. List,et al.  Judgment aggregation: A survey , 2009 .

[57]  Ariel Rubinstein,et al.  The Single Profile Analogues to Multi Profile Theorems: Mathematical Logic's Approach , 1984 .

[58]  Peter C. Fishburn,et al.  Chapter 4 Voting procedures , 2002 .

[59]  Vaughan R. Pratt,et al.  SEMANTICAL CONSIDERATIONS ON FLOYD-HOARE LOGIC , 1976, FOCS 1976.

[60]  P. Fishburn,et al.  Voting Procedures , 2022 .

[61]  Emiliano Lorini,et al.  How to Do Social Simulation in Logic: Modelling the Segregation Game in a Dynamic Logic of Assignments , 2011, MABS.