Numerical evaluation of tensile-loaded tubular scarf adhesive joints

[1]  K. Tan,et al.  Damage and strength analysis of Carbon Fiber Reinforced Polymer and Titanium tubular-lap joint using hybrid adhesive design , 2020 .

[2]  R. Campilho,et al.  Accuracy of cohesive laws with different shape for the shear behaviour prediction of bonded joints , 2019 .

[3]  R. Campilho,et al.  Geometrical and material optimization of tensile loaded tubular adhesive joints using cohesive zone modelling , 2019, The Journal of Adhesion.

[4]  Wenyi Yan,et al.  Comparison on damage tolerance of scarf and stepped-lap bonded composite joints under quasi-static loading , 2018, Composites Part B: Engineering.

[5]  R. Campilho,et al.  Evaluation of different modelling conditions in the cohesive zone analysis of single-lap bonded joints , 2018 .

[6]  R. Campilho,et al.  Overview of different strength prediction techniques for single-lap bonded joints , 2017 .

[7]  R. Campilho,et al.  Testing different cohesive law shapes to predict damage growth in bonded joints loaded in pure tension , 2017 .

[8]  M. Banea,et al.  Comparative Failure Assessment of Single and Double Lap Joints with Varying Adhesive Systems , 2016 .

[9]  Michael D. Shields,et al.  Simulations of Ductile Fracture in an Idealized Ship Grounding Scenario Using Phenomenological Damage and Cohesive Zone Models , 2013 .

[10]  Mariana D. Banea,et al.  Modelling adhesive joints with cohesive zone models: effect of the cohesive law shape of the adhesive layer , 2013 .

[11]  M. Banea,et al.  Modelling of Single-Lap Joints Using Cohesive Zone Models: Effect of the Cohesive Parameters on the Output of the Simulations , 2012 .

[12]  Jean-Marc Drouet,et al.  A multi-objective optimization procedure for bonded tubular-lap joints subjected to axial loading , 2012 .

[13]  A. Jesus,et al.  Strength prediction of single- and double-lap joints by standard and extended finite element modelling , 2011 .

[14]  Mariana D. Banea,et al.  eXtended Finite Element Method for fracture characterization of adhesive joints in pure mode I , 2011 .

[15]  M. Banea,et al.  Strength Improvement of Adhesively-Bonded Joints Using a Reverse-Bent Geometry , 2011 .

[16]  Toshiyuki Sawa,et al.  Stress analysis and strength evaluation of scarf adhesive joints subjected to static tensile loadings , 2010 .

[17]  R. Campilho,et al.  Numerical prediction on the tensile residual strength of repaired CFRP under different geometric changes , 2009 .

[18]  F. Taheri,et al.  A simple approach for characterizing the performance of metallic tubular adhesively-bonded joints under torsion loading , 2007 .

[19]  M. D. de Moura,et al.  Stress and failure analyses of scarf repaired CFRP laminates using a cohesive damage model , 2007 .

[20]  R. Boukhili,et al.  Bonded joints with composite adherends. Part II. Finite element analysis of joggle lap joints , 2006 .

[21]  G. Alfano On the influence of the shape of the interface law on the application of cohesive-zone models , 2006 .

[22]  K. Kedward,et al.  Non-linear Modeling of Tubular Adhesive Scarf Joints Loaded in Tension , 2001 .

[23]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[24]  Robert D. Adams,et al.  Stress analysis of adhesive-bonded lap joints , 1974 .

[25]  R. Moreira,et al.  Comparison of different adhesively-bonded joint configurations for mechanical structures , 2018 .