Fractional Diffusion with Time-Dependent Diffusion Coefficient

In this paper we propose and discuss the fractional diffusion equation with time-dependent diffusion coefficient, considering the Hilfer-type and Weyl fractional derivatives in the time-variable and space-variable, respectively. We apply the similarity method and Mellin transform methodology to find an explicit solution in terms of Fox H-function. We illustrate graphically the diffusive behaviour described by memory and distance effects. We also recover the classical integer order solution as a particular case.

[1]  F. Mainardi,et al.  Fractional models of anomalous relaxation based on the Kilbas and Saigo function , 2014, Meccanica.

[2]  Sanderson L. Gonzaga de Oliveira,et al.  An evaluation of point-insertion sequences for incremental Delaunay tessellations , 2018 .

[3]  M. Caputo,et al.  A new Definition of Fractional Derivative without Singular Kernel , 2015 .

[4]  Jordan Hristov,et al.  Subdiffusion model with time-dependent diffusion coefficient: Integral-balance solution and analysis , 2017 .

[5]  F. Costa,et al.  Travelling Waves in Space-Fractional Nonlinear Diffusion with Linear Convection , 2017 .

[6]  Kwok Sau Fa,et al.  Time-fractional diffusion equation with time dependent diffusion coefficient. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Udita N. Katugampola New approach to a generalized fractional integral , 2010, Appl. Math. Comput..

[8]  Y. Povstenko,et al.  Fractional heat conduction with heat absorption in a sphere under Dirichlet boundary condition , 2018 .

[9]  J. Vanterler da C. Sousa,et al.  On the ψ-Hilfer fractional derivative , 2017, Commun. Nonlinear Sci. Numer. Simul..

[10]  E. C. Oliveira,et al.  On the fractional Harry Dym equation , 2018 .

[11]  D. S. Oliveira,et al.  Hilfer–Katugampola fractional derivatives , 2018 .

[12]  E. C. Oliveira,et al.  The fractional Schrödinger equation for delta potentials , 2010 .

[13]  José António Tenreiro Machado,et al.  A review of definitions of fractional derivatives and other operators , 2019, J. Comput. Phys..

[14]  Paolo Grigolini,et al.  Diffusion in heterogeneous media: An iterative scheme for finding approximate solutions to fractional differential equations with time-dependent coefficients , 2015, J. Comput. Phys..

[15]  J. Vanterler da C. Sousa,et al.  On the local $M$-derivative , 2017 .

[16]  J. Marão,et al.  Similarity solution to fractional nonlinear space-time diffusion-wave equation , 2015 .

[17]  E. C. Oliveira,et al.  Slowing-down of neutrons: a fractional model , 2015 .

[18]  Francesco Mainardi,et al.  Discrete and Continuous Random Walk Models for Space-Time Fractional Diffusion , 2004 .

[19]  F. Costa,et al.  Fractional space–time nonlinear reaction–convection–diffusion , 2018 .

[20]  D. S. Oliveira,et al.  The fractional space–time radial diffusion equation in terms of the Fox’sH-function , 2019, Physica A: Statistical Mechanics and its Applications.