Quantum Illumination with a Hetero-Homodyne Receiver and Sequential Detection

We propose a hetero-homodyne receiver for quantum illumination (QI) target detection. Unlike prior QI receivers, it uses a cascaded positive operator-valued measurement (POVM) that does not require a quantum interaction between QI's returned radiation and its stored idler. When used without sequential detection its performance matches the 3 dB quantum advantage over optimum classical illumination (CI) that Guha and Erkmen's [Phys. Rev. A 80, 052310 (2009)] phase-conjugate and parametric amplifier receivers enjoy. When used in a sequential detection QI protocol, the hetero-homodyne receiver offers a 9 dB quantum advantage over a conventional CI radar, and a 3 dB advantage over a CI radar with sequential detection. Our work is a significant step forward toward a practical quantum radar for the microwave region, and, more generally, emphasizes the potential offered by cascaded POVMs for quantum radar.

[1]  B. Huard,et al.  Quantum advantage in microwave quantum radar , 2022, Nature Physics.

[2]  Boulat A. Bash,et al.  Quantum-Enhanced Transmittance Sensing , 2022, IEEE Journal of Selected Topics in Signal Processing.

[3]  J. Shapiro First-photon target detection: Beating Nair's pure-loss performance limit , 2022, Physical Review A.

[4]  Robert H. Jonsson,et al.  Gaussian quantum estimation of the loss parameter in a thermal environment , 2022, Journal of Physics A: Mathematical and Theoretical.

[5]  Robert H. Jonsson,et al.  Quantum Radar – What is it good for? , 2021, 2021 IEEE Radar Conference (RadarConf21).

[6]  Christoph Hirche,et al.  Quantum Sequential Hypothesis Testing. , 2020, Physical review letters.

[7]  P. Lam,et al.  Optimal probes for continuous-variable quantum illumination , 2020, 2010.09156.

[8]  Nicolas Treps,et al.  Detecting a Target With Quantum Entanglement , 2020, IEEE Aerospace and Electronic Systems Magazine.

[9]  R. Nair,et al.  Fundamental limits of quantum illumination , 2020, 2002.12252.

[10]  J. Shapiro The Quantum Illumination Story , 2019, IEEE Aerospace and Electronic Systems Magazine.

[11]  Giacomo De Palma,et al.  Minimum error probability of quantum illumination , 2018, Physical Review A.

[12]  Jeffrey H. Shapiro,et al.  Optimum mixed-state discrimination for noisy entanglement-enhanced sensing , 2016, 2017 Conference on Lasers and Electro-Optics (CLEO).

[13]  E Solano,et al.  Quantum Estimation Methods for Quantum Illumination. , 2016, Physical review letters.

[14]  Saikat Guha,et al.  Microwave quantum illumination. , 2015, Physical review letters.

[15]  Zheshen Zhang,et al.  Entanglement-enhanced sensing in a lossy and noisy environment. , 2014, Physical review letters.

[16]  Ranjith Nair,et al.  Discriminating quantum-optical beam-splitter channels with number-diagonal signal states: Applications to quantum reading and target detection , 2011, 1105.4063.

[17]  Saikat Guha,et al.  Gaussian-state quantum-illumination receivers for target detection , 2009, 0911.0950.

[18]  J. Shapiro The Quantum Theory of Optical Communications , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[19]  S. Lloyd,et al.  Quantum illumination with Gaussian states. , 2008, Physical review letters.

[20]  Seth Lloyd,et al.  Computable bounds for the discrimination of Gaussian states , 2008, 0806.1625.

[21]  E. Bagan,et al.  Quantum Chernoff bound as a measure of distinguishability between density matrices: Application to qubit and Gaussian states , 2007, 0708.2343.

[22]  Saikat Guha,et al.  Ultimate channel capacity of free-space optical communications (Invited) , 2005 .

[23]  B. K. Ghosh,et al.  Sequential Tests of Statistical Hypotheses. , 1972 .

[24]  Harry L. Van Trees,et al.  Detection, Estimation, and Modulation Theory, Part I , 1968 .

[25]  Bingzhi Zhang,et al.  Fulfilling entanglement’s benefit via converting correlation to coherence , 2022 .

[26]  J. Tarter,et al.  Detection , 2021, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..