A magnetic source imaging camera

We describe a magnetic source imaging camera (MSIC) allowing a direct dynamic visualization of the two-dimensional spatial distribution of the individual components Bx(x,y), By(x,y) and Bz(x,y) of a magnetic field. The field patterns allow—in principle—a reconstruction of the distribution of sources that produce the field B→ by inverse problem analysis. We compare experimentally recorded point-spread functions, i.e., field patterns produced by point-like magnetic dipoles of different orientations with anticipated field patterns. Currently, the MSIC can resolve fields of ≈10 pT (1 s measurement time) range in a field of view up to ∼20 × 20 mm2. The device has a large range of possible applications. As an example, we demonstrate the MSIC's use for recording the spatially resolved Neel magnetorelaxation of blocked magnetic nanoparticles.

[1]  A. Weis,et al.  Measurement of longitudinal and transverse spin relaxation rates using the ground-state Hanle effect , 2011 .

[2]  G. Bison,et al.  A large sample study of spin relaxation and magnetometric sensitivity of paraffin-coated Cs vapor cells , 2008, 0812.4425.

[3]  Dmitry Budker,et al.  Eddy current imaging with an atomic radio-frequency magnetometer , 2016, 1603.05067.

[4]  Measurements of Magnetic Field Distributions With an Optically Pumped K-Rb Hybrid Atomic Magnetometer , 2014, IEEE Transactions on Magnetics.

[5]  K. Ishikawa,et al.  Optical magnetic-resonance imaging of laser-polarized Cs atoms , 1999 .

[6]  W. Gawlik,et al.  Resonant nonlinear magneto-optical effects in atoms , 2002, physics/0203077.

[7]  A. Petri‐Fink,et al.  A quantitative study of particle size effects in the magnetorelaxometry of magnetic nanoparticles using atomic magnetometry , 2015 .

[8]  R. Juang,et al.  Biochemical and biomedical applications of multifunctional magnetic nanoparticles: a review , 2011 .

[9]  A. Hofer,et al.  Laser-driven Cs magnetometer arrays for magnetic field measurement and control , 2009 .

[10]  E. Mikhailov,et al.  Magnetic field imaging with atomic Rb vapor. , 2009, Optics letters.

[11]  Bernhard Gleich,et al.  Tomographic imaging using the nonlinear response of magnetic particles , 2005, Nature.

[12]  Andrew Horsley,et al.  Widefield microwave imaging in alkali vapor cells with sub-100 μm resolution , 2015, 1510.00223.

[13]  Cameron Deans,et al.  Electromagnetic induction imaging with a radio-frequency atomic magnetometer , 2016, 1603.03412.

[14]  A. Weis,et al.  Imaging magnetic scalar potentials by laser-induced fluorescence from bright and dark atoms , 2014, 1404.2215.

[15]  T. W. Kornack,et al.  A subfemtotesla multichannel atomic magnetometer , 2003, Nature.

[16]  G Lembke,et al.  Optical multichannel room temperature magnetic field imaging system for clinical application. , 2014, Biomedical optics express.

[17]  Young Jin Kim,et al.  Ultra-sensitive Magnetic Microscopy with an Optically Pumped Magnetometer , 2016, Scientific Reports.

[18]  Philipp Treutlein,et al.  Simple microwave field imaging technique using hot atomic vapor cells , 2012, 1207.4964.

[19]  Alex I. Braginski,et al.  Biomagnetism using SQUIDs: status and perspectives , 2006 .

[20]  John E. Lane,et al.  Simple Analytic Expressions for the Magnetic Field of a Circular Current Loop , 2001 .

[21]  A. Pines,et al.  Optical magnetic resonance imaging of Rb vapor in low magnetic fields , 1997 .

[22]  D. Budker,et al.  Optical magnetometry - eScholarship , 2006, physics/0611246.

[23]  G. Orriols,et al.  An experimental method for the observation of r.f. transitions and laser beat resonances in oriented Na vapour , 1976 .

[24]  F. Guillemin,et al.  Sentinel lymph node identification using superparamagnetic iron oxide particles versus radioisotope: The French Sentimag feasibility trial , 2016, Journal of surgical oncology.

[25]  G. Bison,et al.  A room temperature 19-channel magnetic field mapping device for cardiac signals , 2009, 0906.4869.