Non-geometric tilt-to-length coupling in precision interferometry: mechanisms and analytical descriptions

This paper is the second in a set of two investigating tilt-to-length (TTL) coupling. TTL describes the cross-coupling of angular or translational jitter into an interferometric phase signal and is an important noise source in precision interferometers, including space gravitational wave detectors like LISA. We discussed in Hartig et al (2022 J. Opt. 24 065601) the TTL coupling effects originating from optical path length changes, i.e. geometric TTL coupling. Within this work, we focus on the wavefront and detector geometry dependent TTL coupling, called non-geometric TTL coupling, in the case of two interfering fundamental Gaussian beams. We characterise the coupling originating from the properties of the interfering beams, i.e. their absolute and relative angle at the detector, their relative offset and the individual beam parameters. Furthermore, we discuss the dependency of the TTL coupling on the geometry of the detecting photodiode. Wherever possible, we provide analytical expressions for the expected TTL coupling effects. We investigate the non-geometric coupling effects originating from beam walk due to the angular or translational jitter of a mirror or a receiving system. These effects are directly compared with the corresponding detected optical path length changes in Hartig et al (2022 J. Opt. 24 065601). Both together provide the total interferometric readout. We discuss in which cases the geometric and non-geometric TTL effects cancel one-another. Additionally, we list linear TTL contributions that can be used to counteract other TTL effects. Altogether, our results provide key knowledge to minimise the total TTL coupling noise in experiments by design or realignment.

[1]  K. Weber,et al.  Method Comparison for Simulating Non-Gaussian Beams and Diffraction for Precision Interferometry , 2022, Sensors.

[2]  G. Heinzel,et al.  Postprocessing subtraction of tilt-to-length noise in LISA , 2022, Physical Review D.

[3]  S. Schuster,et al.  Geometric tilt-to-length coupling in precision interferometry: mechanisms and analytical descriptions , 2022, Journal of Optics.

[4]  Yongho Lee Development of an advanced tilt actuator for tilt-to-length coupling investigations , 2021 .

[5]  G. Heinzel,et al.  Tilt-to-Length Coupling in the GRACE Follow-On Laser Ranging Interferometer , 2020 .

[6]  M. Álvarez,et al.  Tracking Length and Differential-Wavefront-Sensing Signals from Quadrant Photodiodes in Heterodyne Interferometers with Digital Phase-Locked-Loop Readout , 2020, 2005.00003.

[7]  T. S. Schwarze,et al.  Optical Suppression of Tilt-to-Length Coupling in the LISA Long-Arm Interferometer , 2020, Physical Review Applied.

[8]  M. J. Burke,et al.  In-Orbit Performance of the GRACE Follow-on Laser Ranging Interferometer. , 2019, Physical review letters.

[9]  S. Mottini,et al.  Telescope jitters and phase noise in the LISA interferometer. , 2019, Optics express.

[10]  C. Sasso,et al.  Coupling of wavefront errors and pointing jitter in the LISA interferometer: misalignment of the interfering wavefronts , 2018, Classical and Quantum Gravity.

[11]  S. Mottini,et al.  Coupling of wavefront errors and jitter in the LISA interferometer: far-field propagation , 2018, Classical and Quantum Gravity.

[12]  Salvatore J. Vitale,et al.  Calibrating the system dynamics of LISA Pathfinder , 2018, Physical Review D.

[13]  T. S. Schwarze,et al.  Reducing tilt-to-length coupling for the LISA test mass interferometer , 2017, 1711.10320.

[14]  N. Karnesis,et al.  Preliminary results on the suppression of sensing cross-talk in LISA Pathfinder , 2017 .

[15]  G. Heinzel,et al.  Spatially resolved photodiode response for simulating precise interferometers. , 2016, Applied optics.

[16]  T. S. Schwarze,et al.  Design and construction of an optical test bed for LISA imaging systems and tilt-to-length coupling , 2016, 1607.00408.

[17]  A. Petiteau,et al.  Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results. , 2016, Physical review letters.

[18]  Gerhard Heinzel,et al.  Experimental demonstration of reduced tilt-to-length coupling by a two-lens imaging system. , 2016, Optics express.

[19]  Gerhard Heinzel,et al.  A brief comparison of optical pathlength difference and various definitions for the interferometric phase , 2015 .

[20]  G. Heinzel,et al.  Vanishing tilt-to-length coupling for a singular case in two-beam laser interferometers with Gaussian beams. , 2014, Applied optics.

[21]  G. Heinzel,et al.  Analytical description of interference between two misaligned and mismatched complete Gaussian beams. , 2014, Applied optics.

[22]  Karsten Danzmann,et al.  Methods for simulating the readout of lengths and angles in laser interferometers with Gaussian beams , 2012 .

[23]  Karsten Danzmann,et al.  Intersatellite laser ranging instrument for the GRACE follow-on mission , 2012, Journal of Geodesy.

[24]  O. Jennrich,et al.  LISA technology and instrumentation , 2009, 0906.2901.

[25]  Ulrich Johann,et al.  Interferometry for the LISA technology package (LTP) aboard SMART-2 , 2003 .

[26]  B. J. Meers,et al.  Automatic alignment of optical interferometers. , 1994, Applied optics.

[27]  Karsten Danzmann,et al.  Simulating and Optimizing Laser Interferometers , 2013 .