Observation and Modulation of High-Temperature Moiré-Locale Excitons in van der Waals Heterobilayers.

Transition metal dichalcogenide heterobilayers feature strong moiré potentials with multiple local minima, which can spatially trap interlayer excitons at different locations within one moiré unit cell (dubbed moiré locales). However, current studies mainly focus on moiré excitons trapped at a single moiré locale. Exploring interlayer excitons trapped at different moiré locales is highly desirable for building polarized light-emitter arrays and studying multiorbital correlated and topological physics. Here, via enhancing the interlayer coupling and engineering the heterointerface, we report the observation and modulation of high-temperature interlayer excitons trapped at separate moiré locales in WS2/WSe2 heterobilayers. These moiré-locale excitons are identified by two emission peaks with an energy separation of ∼60 meV, exhibiting opposite circular polarizations due to their distinct local stacking registries. With the increase of temperature, two momentum-indirect moiré-locale excitons are observed, which show a distinct strain dependence with the momentum-direct one. The emission of these moiré-locale excitons can be controlled via engineering the heterointerface with different phonon scattering, while their emission energy can be further modulated via strain engineering. Our reported highly tunable interlayer excitons provide important information on understanding moiré excitonic physics, with possible applications in building high-temperature excitonic devices.

[1]  Yuerui Lu,et al.  Enhanced interactions of interlayer excitons in free-standing heterobilayers , 2022, Nature.

[2]  J. Shan,et al.  Semiconductor moiré materials , 2022, Nature Nanotechnology.

[3]  H. Deng,et al.  Emerging exciton physics in transition metal dichalcogenide heterobilayers , 2022, Nature Reviews Materials.

[4]  Kenji Watanabe,et al.  Localized interlayer excitons in MoSe2–WSe2 heterostructures without a moiré potential , 2022, Nature Communications.

[5]  Xiaoqin Li,et al.  Excitons in semiconductor moiré superlattices , 2022, Nature Nanotechnology.

[6]  J. Shan,et al.  Excitons and emergent quantum phenomena in stacked 2D semiconductors , 2021, Nature.

[7]  Xiaodong Xu,et al.  Moiré trions in MoSe2/WSe2 heterobilayers , 2021, Nature Nanotechnology.

[8]  Kenji Watanabe,et al.  Imaging two-dimensional generalized Wigner crystals , 2021, Nature.

[9]  Yia-Chung Chang,et al.  Signatures of moiré trions in WSe2/MoSe2 heterobilayers , 2021, Nature.

[10]  A. Millis,et al.  Quantum criticality in twisted transition metal dichalcogenides , 2021, Nature.

[11]  J. Shan,et al.  Continuous Mott transition in semiconductor moiré superlattices , 2021, Nature.

[12]  A. MacDonald,et al.  The marvels of moiré materials , 2021, Nature Reviews Materials.

[13]  A. Georges,et al.  Moiré heterostructures as a condensed-matter quantum simulator , 2020, Nature Physics.

[14]  J. Shan,et al.  Correlated insulating states at fractional fillings of moiré superlattices , 2020, Nature.

[15]  B. Gerardot,et al.  Highly energy-tunable quantum light from moiré-trapped excitons , 2020, Science Advances.

[16]  J. Shan,et al.  Stripe phases in WSe2/WS2 moiré superlattices , 2020, Nature Materials.

[17]  Kenji Watanabe,et al.  Correlated insulating states at fractional fillings of the WS2/WSe2 moiré lattice , 2020, Nature Physics.

[18]  Kenji Watanabe,et al.  Correlated electronic phases in twisted bilayer transition metal dichalcogenides , 2020, Nature Materials.

[19]  X. Duan,et al.  Efficient strain modulation of 2D materials via polymer encapsulation , 2020, Nature Communications.

[20]  J. Shan,et al.  Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices , 2020, Nature.

[21]  Xiaodong Xu,et al.  One-Dimensional Moir\'e Excitons in Transition-Metal Dichalcogenide Heterobilayers , 2019, 1912.06628.

[22]  Kenji Watanabe,et al.  Flat bands in twisted bilayer transition metal dichalcogenides , 2019, Nature Physics.

[23]  Kenji Watanabe,et al.  Moiré superlattice in a MoSe 2 / hBN / MoSe 2 heterostructure : from coherent coupling of inter-and intra-layer excitons to correlated Mott-like states of electrons , 2019 .

[24]  Kenji Watanabe,et al.  Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices , 2019, Nature.

[25]  Luka M. Devenica,et al.  Dipolar interactions between localized interlayer excitons in van der Waals heterostructures , 2019, Nature Materials.

[26]  B. Gerardot,et al.  Spin–layer locking of interlayer excitons trapped in moiré potentials , 2019, Nature Materials.

[27]  K. Novoselov,et al.  Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures , 2019, Nature.

[28]  Chan-Shan Yang,et al.  Resolving spin, valley, and moiré quasi-angular momentum of interlayer excitons in WSe2/WS2 heterostructures , 2019, 1902.05887.

[29]  Kenji Watanabe,et al.  Observation of moiré excitons in WSe2/WS2 heterostructure superlattices , 2018, Nature.

[30]  Jiaqiang Yan,et al.  Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers , 2018, Nature.

[31]  S. Banerjee,et al.  Evidence for moiré excitons in van der Waals heterostructures , 2018, Nature.

[32]  D. Reichman,et al.  Momentum-space indirect interlayer excitons in transition-metal dichalcogenide van der Waals heterostructures , 2018, Nature Physics.

[33]  W. Yao,et al.  Brightened spin-triplet interlayer excitons and optical selection rules in van der Waals heterobilayers , 2018, 1803.01292.

[34]  Xiaodong Xu,et al.  Moiré excitons: From programmable quantum emitter arrays to spin-orbit–coupled artificial lattices , 2017, Science Advances.

[35]  M. Chou,et al.  Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers , 2017, Science Advances.

[36]  G. Burkard,et al.  k·p theory for two-dimensional transition metal dichalcogenide semiconductors , 2014, 1410.6666.

[37]  Wang Yao,et al.  Spin and pseudospins in layered transition metal dichalcogenides , 2014, Nature Physics.

[38]  Aaron M. Jones,et al.  Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures , 2014, Nature Communications.

[39]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.