TIME DELAYS IN EPIDEMIC MODELS Modeling and Numerical Considerations

Continuous time deterministic epidemic models are traditionally formulated as systems of ordinary differential equations for the numbers of individuals in various disease states, with the sojourn time in a state being exponentially distributed. Time delays are introduced to model constant sojourn times in a state, for example, the infective or immune state. Models then become delay-differential and/or integral equations. For a review of some epidemic models with delay see van den Driessche [228]. More generally, an arbitrarily distributed sojourn time in a state, for example, the infective or immune state, is used by some authors (see [69] and the references therein). When introduced in an explicit way, time delays may change the qualitative behavior of a model; for example, an epidemic model with generalized logistic dynamics can have periodic solutions when the time in the infective stage is constant [112]. Qualitative differences that arise from including time delay in an explicit way in models that include vertical transmission are explored in [38, Chapter 4]. In population biology, a maturation time delay is used to explain observed oscillations [192]. This delay is included in an epidemic model by Cooke, van den Driessche and

[1]  K. Landman Bifurcation and Stability Theory of Periodic Solutions For Integrodifferential Equations , 1980 .

[2]  Roger W. Brockett The theory of linear systems , 1972 .

[3]  Kenneth L. Cooke,et al.  Stability analysis for a vector disease model , 1979 .

[4]  Robert M. May,et al.  Time delays are not necessarily destabilizing , 1975 .

[5]  A. Schiaffino,et al.  Monotone methods and attractivity results for Volterra integro-partial differential equations , 1981, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[6]  R. Kitching Time resources and population dynamics in insects , 1977 .

[7]  H. I. Freedman,et al.  Global Asymptotics in Some Quasimonotone Reaction-Diffusion Systems with Delays , 1997 .

[8]  Bernhard Lani-Wayda Hyperbolic Sets, Shadowing and Persistence for Noninvertible Mappings in Banach Spaces , 1995 .

[9]  H. Peitgen,et al.  Functional Differential Equations and Approximation of Fixed Points , 1979 .

[10]  H. Simpson Stability of Periodic Solutions of Nonlinear Integrodifferential Systems , 1980 .

[11]  A. J. Hall Infectious diseases of humans: R. M. Anderson & R. M. May. Oxford etc.: Oxford University Press, 1991. viii + 757 pp. Price £50. ISBN 0-19-854599-1 , 1992 .

[12]  Hans-Otto Walther,et al.  Stable periodic motion of a delayed spring , 2003 .

[13]  Reinhard Redlinger,et al.  On Volterra’s Population Equation with Diffusion , 1985 .

[14]  The logistic equation with a diffusionally coupled delay , 1981 .

[15]  K. Cooke,et al.  Vertically transmitted diseases , 1993 .

[16]  M. Bardi An equation of growth of a single species with realistic dependence on crowding and seasonal factors , 1983, Journal of mathematical biology.

[17]  F. Räbiger,et al.  Asymptotic properties of mild solutions of nonautonomous evolution equations with applications to retarded differential equations , 1999 .

[18]  Hans-Otto Walther,et al.  Chaotic motion generated by delayed negative feedback. I. A transversality criterion , 1995 .

[19]  Linearized Stability for Semilinear Non-Autonomous Evolution Equations With Applications to Retarded , 1997 .

[20]  V. Lakshmikantham,et al.  Differential and integral inequalities : theory and applications , 1969 .

[21]  Yang Kuang,et al.  Global attractivity and periodic solutions in delay-differential equations related to models in physiology and population biology , 1992 .

[22]  B. Lani-Wayda Erratic solutions of simple delay equations , 1999 .

[23]  Asymptotic behavior of hyperbolic Cauchy problems for Hille-Yosida operators with an application to retarded differential equations , 2000 .

[24]  A. Fruchard,et al.  ON COMBINED ASYMPTOTIC EXPANSIONS IN SINGULAR PERTURBATIONS , 2002 .

[25]  K. Hadeler On the stability of the stationary state of a population growth equation with time-lag , 1976, Journal of mathematical biology.

[26]  Abdul-Majid Wazwaz,et al.  A new algorithm for calculating adomian polynomials for nonlinear operators , 2000, Appl. Math. Comput..

[27]  Tibor Krisztin,et al.  A local unstable manifold for differential equations with state-dependent delay , 2003 .

[28]  T. Gard,et al.  Ultimate Bounds and Global Asymptotic Stability for Differential Delay Equations , 1995 .

[29]  István Györi,et al.  On the existence of rapidly oscillatory solutions in the Nicholson blowflies equation , 2002 .

[30]  Roger D. Nussbaum,et al.  Periodic solutions of some nonlinear autonomous functional differential equations , 1974 .

[31]  David Green,et al.  DIFFUSION AND HEREDITARY EFFECTS IN A CLASS OF POPULATION MODELS , 1981 .

[32]  Hans-Otto Walther,et al.  The solution manifold and C1-smoothness for differential equations with state-dependent delay , 2003 .

[33]  L. Rockwood Introduction to population ecology , 2006 .

[34]  Michael C. Mackey,et al.  Relaxation Oscillations in a Class of Delay Differential Equations , 2002, SIAM J. Appl. Math..

[35]  Chuanyi Zhang Pseudo Almost Periodic Solutions of Some Differential Equations, II , 1994 .

[36]  Joseph W.-H. So,et al.  On the uniform stability for a ‘food-limited’ population model with time delay , 1995, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[37]  S. Lunel,et al.  Delay Equations. Functional-, Complex-, and Nonlinear Analysis , 1995 .

[38]  C. Qian,et al.  Oscillation and Global Attractivity in a Periodic Delay Equation , 1996, Canadian Mathematical Bulletin.

[39]  Odo Diekmann,et al.  Perturbation theory for dual semigroups , 1987 .

[40]  Hans-Otto Walther,et al.  The 2-dimensional attractor of ’()=-()+((-1)) , 1995 .

[41]  Tibor Krisztin Invariance and Noninvariance of Center Manifolds of Time-t Maps with Respect to the Semiflow , 2005, SIAM J. Math. Anal..

[42]  John Mallet-Paret,et al.  Periodic solutions for functional differential equations with multiple state-depend time lags , 1994 .

[43]  Yang Kuang,et al.  Slowly oscillating periodic solutions of autonomous state-dependent delay equations , 1992 .

[44]  O. Diekmann Mathematical Epidemiology of Infectious Diseases , 1996 .

[45]  S. Luckhaus Global boundedness for a delay differential equation , 1986 .

[46]  Jim M Cushing,et al.  Integrodifferential Equations and Delay Models in Population Dynamics , 1977 .

[47]  Bounded Convolutions and Solutions of Inhomogeneous Cauchy Problems , 2007 .

[48]  Jack K. Hale,et al.  Symbolic dynamics and nonlinear semiflows , 1986 .

[49]  Jianhong Wu,et al.  Periodic solutions of single-species models with periodic delay , 1992 .

[50]  A Beuter,et al.  Feedback and delays in neurological diseases: a modeling study using dynamical systems. , 1993, Bulletin of mathematical biology.

[51]  O. Arino,et al.  Pseudo almost periodic solutions for some differential equations in a Banach space , 1997 .

[52]  B. Hassard,et al.  Theory and applications of Hopf bifurcation , 1981 .

[53]  R. May,et al.  Stability and Complexity in Model Ecosystems , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[54]  Jan van Neerven,et al.  The Adjoint of a Semigroup of Linear Operators , 1992 .

[55]  C. C. Travis,et al.  Existence, stability, and compactness in the -norm for partial functional differential equations , 1978 .

[56]  G. Ladas,et al.  Oscillation and global stability in a delay logistic equation , 1994 .

[57]  F. Brauer,et al.  Mathematical Models in Population Biology and Epidemiology , 2001 .

[58]  Y. G. Sficas,et al.  Global attractivity in nicholson's blowflies , 1992 .

[59]  Y. Morita Destabilization of periodic solutions arising in delay-diffusion systems in several space dimensions , 1984 .

[60]  Jurang Yan,et al.  Global attractivity and oscillation in a nonlinear delay equation , 2001 .

[61]  Linear stability criteria for population models with periodically perturbed delays , 2000, Journal of mathematical biology.

[62]  Odo Diekmann,et al.  Perturbation theory for dual semigroups. I. The sun-reflexive case , 1986 .

[63]  R. Schnaubelt,et al.  A Characteristic Equation for Non-autonomous Partial Functional Differential Equations , 2002 .

[64]  Harrison H. Barrett,et al.  2 – Theory of Linear Systems , 1981 .

[65]  R. Agarwal Recent Trends in Differential Equations , 1992 .

[66]  Shui-Nee Chow,et al.  Characteristic multipliers and stability of symmetric periodic solutions of x'(t)=g(x(t−1)) , 1988 .

[67]  N. Macdonald Time lags in biological models , 1978 .

[68]  A Delay Logistic Equation with Variable Growth Rate , 1982 .

[69]  Horst R. Thieme,et al.  Endemic Models with Arbitrarily Distributed Periods of Infection I: Fundamental Properties of the Model , 2000, SIAM J. Appl. Math..

[70]  S. Levin Lectu re Notes in Biomathematics , 1983 .

[71]  G. Sell,et al.  The Hopf Bifurcation and Its Applications , 1976 .

[72]  Samir H. Saker,et al.  Oscillation and global attractivity in a periodic Nicholson's blowflies model , 2002 .

[73]  P. van den Driessche,et al.  On a two lag differential delay equation , 1983, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[74]  B. Amir,et al.  Existence and asymptotic behavior of solutions of semilinear Cauchy problems with non dense domain via extrapolation spaces , 2000 .

[75]  Ovide Arino,et al.  The Two-Dimensional Attractor of a Differential Equation with State-Dependent Delay , 2001 .

[76]  Constantin Corduneanu,et al.  Integral Equations and Stability of Feedback Systems , 1973 .

[77]  C. Travis,et al.  Existence and stability for partial functional differential equations , 1974 .

[78]  Julien Arino,et al.  An epidemiology model that includes a leaky vaccine with a general waning function , 2004 .

[79]  Eduardo Liz,et al.  Attractivity properties of infinite delay Mackey-Glass type equations , 2002, Differential and Integral Equations.

[80]  J. Craggs Applied Mathematical Sciences , 1973 .

[81]  Ming-Po Chen,et al.  On the stability of a delay differential population model , 1995 .

[82]  Jianhong Wu,et al.  Stable phase-locked periodic solutions in a delay differential system , 2003 .

[83]  Ovide Arino,et al.  A saddle point theorem for functional state-dependent delay differential equations , 2005 .

[84]  Hal L. Smith,et al.  Monotone Dynamical Systems: An Introduction To The Theory Of Competitive And Cooperative Systems (Mathematical Surveys And Monographs) By Hal L. Smith , 1995 .

[85]  Luigi Amerio,et al.  Almost-periodic functions and functional equations , 1971 .

[86]  J. I. Ramos Advanced Topics in the Theory of Dynamical Systems : G. Fusco, M. Iannelli, and L. Salvadori Academic Press, New York, 1989, $29.95 , 1990 .

[87]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[88]  Yongkun Li,et al.  Existence and global attractivity of a positive periodic solution of a class of delay differential equation , 1998 .

[89]  G.Stephen Jones,et al.  The existence of periodic solutions of f′(x) = − αf(x − 1){1 + f(x)} , 1962 .

[90]  Regularity properties of perturbed Hille-Yosida operators and retarded differential equations , 2001 .

[91]  N. Britton Reaction-diffusion equations and their applications to biology. , 1989 .

[92]  Wenzhang Huang,et al.  Stability and Hopf Bifurcation for a Population Delay Model with Diffusion Effects , 1996 .

[93]  A. Nicholson An outline of the dynamics of animal populations. , 1954 .

[94]  Joseph M. Mahaffy,et al.  A GEOMETRIC ANALYSIS OF STABILITY REGIONS FOR A LINEAR DIFFERENTIAL EQUATION WITH TWO DELAYS , 1995 .

[95]  R. Gaines,et al.  Coincidence Degree and Nonlinear Differential Equations , 1977 .

[96]  J. S. Orr,et al.  The role of chalone in the control of the bone marrow stem cell population , 1970 .

[97]  Mustafa R. S. Kulenovic,et al.  Environmental periodicity and time delays in a “food-limited” population model , 1990 .

[98]  Chuanyi Zhang,et al.  Pseudo Almost Periodic Functions And Their Applications , 1992 .

[99]  James A. Yorke,et al.  On the Stability of a Periodic Solution of a Differential Delay Equation , 1975 .

[100]  Stephen A. Gourley,et al.  Dynamics of the diffusive Nicholson's blowflies equation with distributed delay , 2000, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[101]  Shigui Ruan,et al.  Stability of steady states and existence of travelling waves in a vector-disease model , 2004, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[102]  N. Wiener,et al.  Almost Periodic Functions , 1932, The Mathematical Gazette.

[103]  A. Tesei Stability properties for partial Volterra integrodifferential equations , 1980 .

[104]  James A. Yorke,et al.  Some equations modelling growth processes and gonorrhea epidemics , 1973 .

[105]  O. Diekmann,et al.  Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation , 2000 .

[106]  Hans-Otto Walther,et al.  On instability, θ-limit sets and periodic solutions of nonlinear autonomous differential delay equations , 1979 .

[107]  L. Glass,et al.  Oscillation and chaos in physiological control systems. , 1977, Science.

[108]  Roger D. Nussbaum,et al.  Periodic solutions of some nonlinear, autonomous functional differential equations. II , 1973 .

[109]  R M Nisbet,et al.  Population dynamics in a periodically varying environment. , 1976, Journal of theoretical biology.

[110]  W. Walter Differential and Integral Inequalities , 1970 .

[111]  Pauline van den Driessche,et al.  Time Delay in Epidemic Models , 2002 .

[112]  M. Mackey,et al.  Age-structured and two-delay models for erythropoiesis. , 1995, Mathematical biosciences.

[113]  Jianhong Wu Theory and Applications of Partial Functional Differential Equations , 1996 .

[114]  W. Gurney,et al.  Modelling fluctuating populations , 1982 .

[115]  T. Randolph,et al.  Exponential Dichotomy and Mild Solutions of Nonautonomous Equations in Banach Spaces , 1998 .

[116]  Bernhard Lani-Wayda Wandering solutions of delay equations with sine-like feedback , 2001 .

[117]  S. Gils,et al.  Center manifolds and contractions on a scale of Banach spaces , 1987 .

[118]  K. P. Hadeler,et al.  Periodic solutions of difference-differential equations , 1977 .

[119]  F. Die Entwicklung der Lehre von den Punktmannigfaltigkeiten , 1909 .

[120]  Wenzhang Huang,et al.  Global Dynamics for a Reaction–Diffusion Equation with Time Delay☆ , 1998 .

[121]  H. Walther Bifurcation from periodic solutions in functional differential equations , 1983 .

[122]  K. Gopalsamy Stability and Oscillations in Delay Differential Equations of Population Dynamics , 1992 .

[123]  A. Schiaffino,et al.  Asymptotic behaviour of positive solutions of periodic delay logistic equations , 1982 .

[124]  J. So,et al.  Dynamics of a food-limited population model incorporating nonlocal delays on a finite domain , 2002, Journal of mathematical biology.

[125]  Hans-Otto Walther,et al.  Stable periodic motion of a system with state dependent delay , 2002, Differential and Integral Equations.

[126]  Hans-Otto Walther,et al.  Hyperbolic sets, transversal homoclinic trajectories, and symbolic dynamics for C1-maps in banach spaces , 1990 .

[127]  M. Pinto,et al.  Wright type delay differential equations with negative Schwarzian , 2001 .

[128]  H. Walther,et al.  The structure of an attracting set defined by delayed and monotone positive feedback , 1999 .

[129]  Herbert Amann,et al.  Linear and Quasilinear Parabolic Problems , 2019, Monographs in Mathematics.

[130]  Marek Kimmel,et al.  Stability analysis of models of cell production systems , 1986 .

[131]  Toka Diagana,et al.  Pseudo almost periodic solutions to some differential equations , 2005 .

[132]  John Mallet-Paret,et al.  Boundary layer phenomena for differential-delay equations with state-dependent time lags: III , 2003 .

[133]  J. Sugie On the stability for a population growth equation with time delay , 1992, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[134]  Gail S. K. Wolkowicz,et al.  Dynamical Systems and Their Applications in Biology , 2003 .

[135]  G. E. Hutchinson,et al.  CIRCULAR CAUSAL SYSTEMS IN ECOLOGY , 1948, Annals of the New York Academy of Sciences.

[136]  G. Karakostas The effect of seasonal variations to the delay population equation , 1982 .

[137]  A. Rhandi,et al.  Asymptotic behaviour of a non-autonomous population equation with diffusion in $L^1$ , 1999 .

[138]  Xiangao Li,et al.  Stability and Bifurcation in Delay–Differential Equations with Two Delays , 1999 .

[139]  R. Bing The Geometric Topology of 3-Manifolds , 1983 .

[140]  J. Mallet-Paret Morse Decompositions for delay-differential equations , 1988 .

[141]  S. P. Blythe,et al.  Nicholson's blowflies revisited , 1980, Nature.

[142]  S. Lefschetz Contributions to the theory of nonlinear oscillations , 1950 .

[143]  A. Rhandi,et al.  Extrapolation and inhornogeneous retarded differential equations on infinite dimensional spaces , 1998 .

[144]  A. Nicholson,et al.  Supplement: the Balance of Animal Populations , 1933 .

[145]  K. Gopalsamy,et al.  On the oscillation and asymptotic behavior of () , 1990 .

[146]  G.Stephen Jones On the nonlinear differential-difference equation f′(x) = −αf(x − 1) {1 + f(x)} , 1962 .

[147]  Hans-Otto Walther,et al.  Stable Periodic Motion of a System Using Echo for Position Control , 2003 .

[148]  P. Verhulst,et al.  Notice sur la loi que la population suit dans son accroissement. Correspondance Mathematique et Physique Publiee par A , 1838 .

[149]  Lahcen Maniar,et al.  Composition of pseudo almost periodic functions and Cauchy problems with operator of non dense domain , 1999 .

[150]  S. Bochner,et al.  Book Review: Einar Hille, Functional analysis and semi-groups , 1949 .

[151]  Positivity and Stability for a Population Equation with Diffusion on 1 , 1998 .

[152]  Roman Srzednicki,et al.  A generalized Lefschetz fixed point theorem and symbolic dynamics in delay equations , 2002, Ergodic Theory and Dynamical Systems.

[153]  L. Shampine,et al.  Solving DDEs in MATLAB , 2001 .

[154]  H. Walther Existence of a non-constant periodic solution of a non-linear autonomous functional differential equation representing the growth of a single species population , 1975, Journal of mathematical biology.

[155]  James A. Yorke,et al.  Ordinary differential equations which yield periodic solutions of differential delay equations , 1974 .

[156]  Horst R. Thieme,et al.  The Transition Through Stages with Arbitrary Length Distributions, and Applications in Epidemics , 2002 .

[157]  Wenzhang Huang,et al.  On the problem of linearization for state-dependent delay differential equations , 1996 .

[158]  Kiyoshi Yoshida,et al.  The Hopf bifurcation and its stability for semilinear diffusion equations with time delay arising in ecology , 1982 .

[159]  J. Mallet-Paret,et al.  Boundary layer phenomena for differential-delay equations with state-dependent time lags, I. , 1992 .

[160]  Yang Kuang,et al.  Periodic solutions in periodic state-dependent delay equations and population models , 2001 .

[161]  Mustafa R. S. Kulenovic,et al.  Time lags in a “food–limited” population , 1988 .

[162]  P. Hartman Ordinary Differential Equations , 1965 .

[163]  Tibor Krisztin,et al.  Unique Periodic Orbits for Delayed Positive Feedback and the Global Attractor , 2001 .

[164]  G. Rosen,et al.  Time delays produced by essential nonlinearity in population growth models. , 1987, Bulletin of mathematical biology.

[165]  James Watmough,et al.  A simple SIS epidemic model with a backward bifurcation , 2000, Journal of mathematical biology.

[166]  Mark A. J. Chaplain,et al.  Travelling fronts in a food-limited population model with time delay , 2002, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[167]  W. C. Allee Animal Aggregations: A Study in General Sociology , 1931 .

[168]  Mária Bartha,et al.  Convergence of Solutions for an Equation with State-Dependent Delay , 2001 .

[169]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[170]  G. Sell,et al.  Systems of Differential Delay Equations: Floquet Multipliers and Discrete Lyapunov Functions , 1996 .

[171]  W. C. Allee Animal aggregations, a study in general sociology. / by W. C. Allee. , 1931 .

[172]  H. McCallum,et al.  How should pathogen transmission be modelled? , 2001, Trends in ecology & evolution.

[173]  J. Cushing Time delays in single species growth models , 1977, Journal of mathematical biology.

[174]  Xingfu Zou,et al.  Traveling waves for the diffusive Nicholson's blowflies equation , 2001, Appl. Math. Comput..

[175]  Michael C. Mackey,et al.  Feedback, delays and the origin of blood cell dynamics , 1990 .

[176]  P van den Driessche,et al.  Two SIS epidemiologic models with delays , 2000, Journal of mathematical biology.

[177]  Thomas G. Hallam,et al.  Effects of toxicants on populations: A qualitative: Approach III. Environmental and food chain pathways* , 1984 .

[178]  O. Arino,et al.  Semigroup Properties and the Crandall Liggett Approximation for a Class of Differential Equations with State-Dependent Delays , 2002 .

[179]  Sue Ann Campbell,et al.  Stability and Bifurcations of Equilibria in a Multiple-Delayed Differential Equation , 1994, SIAM J. Appl. Math..

[180]  Hans-Otto Walther,et al.  Contracting return maps for monotone delayed feedback , 2001 .

[181]  Stavros Busenberg,et al.  Periodic Solutions of a Periodic Nonlinear Delay Differential Equation , 1978 .

[182]  Jérôme Losson,et al.  Stable rapidly oscillating solutions in delay differential equations with negative feedback , 1999, Differential and Integral Equations.

[183]  Jianhong Wu,et al.  Numerical steady state and Hopf bifurcation analysis on the diffusive Nicholson's blowflies equation , 2000, Appl. Math. Comput..

[184]  John Mallet-Paret,et al.  Boundary layer phenomena for differential-delay equations with state dependent time lags: II. , 1996 .

[185]  Xianwen Xie,et al.  Uniqueness and stability of slowly oscillating periodic solutions of delay equations with bounded nonlinearity , 1991 .

[186]  K. Cooke,et al.  Interaction of maturation delay and nonlinear birth in population and epidemic models , 1999, Journal of mathematical biology.

[187]  Ferenc Hartung,et al.  Chapter 5 Functional Differential Equations with State-Dependent Delays: Theory and Applications , 2006 .

[188]  R. K. Miller On Volterra’s Population Equation , 1966 .

[189]  乔花玲,et al.  关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .

[190]  K. Gopalsamy,et al.  Oscillations and global attractivity in models of hematopoiesis , 1990 .

[191]  C. Qian Global Attractivity in Nonlinear Delay Differential Equations , 1996 .

[192]  J. Velasco-Hernández,et al.  A simple vaccination model with multiple endemic states. , 2000, Mathematical biosciences.

[193]  G. Karakostas,et al.  Stable steady state of some population models , 1992 .

[194]  P. van den Driessche,et al.  Some epidemiological models with delays , 1994 .

[195]  F. Kappel LINEAR AUTONOMOUS FUNCTIONAL DIFFERENTIAL EQUATIONS , 2006 .

[196]  Xin Lu,et al.  Asymptotic periodicity in diffusive logistic equations with discrete delays , 1996 .

[197]  Paul C. Fife,et al.  Mathematical Aspects of Reacting and Diffusing Systems , 1979 .

[198]  A. Besicovitch Almost Periodic Functions , 1954 .

[199]  Yue Jianshe Global attractivity of the zero solution of a class of functional differential equations and its applications , 1996 .

[200]  Suzanne Lenhart,et al.  Global stability of a biological model with time delay , 1986 .

[201]  P. B. Kahn,et al.  Phase and amplitude instability in delay-diffusion population models , 1982 .

[202]  MONOTONE SEMIFLOWS GENERATED BY NEUTRAL EQUATIONS WITH DIFFERENT DELAYS IN NEUTRAL AND RETARDED PARTS , 1991 .

[203]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[204]  Jianhong Wu,et al.  Shape, Smoothness and Invariant Stratification of an Attracting Set for Delayed Monotone Positive Feedback , 1998 .

[205]  J. Hale,et al.  Global geometry of the stable regions for two delay differential equations , 1993 .

[206]  R. Sokal,et al.  Oscillations in Housefly Population Sizes Due to Time Lags , 1976 .

[207]  Teresa Faria,et al.  Topics in Functional Differential and Difference Equations , 2001 .

[208]  L. Bonilla,et al.  Relaxation Oscillations, Pulses, and Travelling Waves in the Diffusive Volterra Delay-Differential Equation , 1984 .

[209]  C. V. Pao,et al.  Systems of Parabolic Equations with Continuous and Discrete Delays , 1997 .

[210]  A. Schiaffino On a diffusion volterra equation , 1979 .

[211]  E. M. Wright A non-linear difference-differential equation. , 1946 .

[212]  Nicholas F. Britton,et al.  On a modified Volterra population equation with diffusion , 1993 .

[213]  A. Nicholson,et al.  The Balance of Animal Populations.—Part I. , 1935 .

[214]  M. Symonds,et al.  Evolutionary Ecology , 2004, Evolutionary Ecology.

[215]  R. Fisher THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES , 1937 .

[216]  Yang Kuang,et al.  Geometric Stability Switch Criteria in Delay Differential Systems with Delay Dependent Parameters , 2002, SIAM J. Math. Anal..

[217]  A. Rhandi Extrapolation methods to solve non-autonomous retarded partial differential equations , 1997 .

[218]  Richard K Miller,et al.  Nonlinear Volterra Integral Equations , 1970 .

[219]  Harlan W. Stech,et al.  The effect of time lags on the stability of the equilibrium state of a population growth equation , 1978 .

[220]  B. S. Lalli,et al.  On a periodic delay population model , 1994 .

[221]  H. Walther,et al.  Smoothness Properties of Semiflows for Differential Equations with State-Dependent Delays , 2004 .

[222]  Samuel Zaidman,et al.  Abstract differential equations , 1979 .

[223]  Yoshio Yamada Asymptotic behavior of solutions for semilinear Volterra diffusion equations , 1993 .

[224]  K. Ezzinbi,et al.  Boundedness and almost periodicity for some state-dependent delay differential equations. , 2002 .

[225]  Joseph W.-H. So,et al.  DIRICHLET PROBLEM FOR THE DIFFUSIVE NICHOLSON'S BLOWFLIES EQUATION , 1998 .

[226]  Xin Lu,et al.  Global periodicity in a class of reaction-diffusion systems with time delays , 2002 .

[227]  Global stability in time-delayed single-species dynamics. , 1986, Bulletin of mathematical biology.

[228]  Kondalsamy Gopalsamy,et al.  Global attractivity and oscillations in a periodic delay-logistic equation , 1990 .

[229]  F. Brauer Time lag in disease models with recruitment , 2000 .

[230]  J. Hale Theory of Functional Differential Equations , 1977 .

[231]  Mária Bartha,et al.  Periodic solutions for differential equations with state-dependent delay and positive feedback , 2003 .

[232]  Nicholas F. Britton,et al.  Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model , 1990 .

[233]  William Gurney,et al.  Instability and complex dynamic behaviour in population models with long time delays , 1982 .