On coarser interval temporal logics

Abstract The primary characteristic of interval temporal logic is that intervals, rather than points, are taken as the primitive ontological entities. Given their generally bad computational behavior of interval temporal logics, several techniques exist to produce decidable and computationally affordable temporal logics based on intervals. In this paper we take inspiration from Golumbic and Shamir's coarser interval algebras, which generalize the classical Allen's Interval Algebra, in order to define two previously unknown variants of Halpern and Shoham's logic (HS) based on coarser relations. We prove that, perhaps surprisingly, the satisfiability problem for the coarsest of the two variants, namely HS 3 , not only is decidable, but PSpace -complete in the finite/discrete case, and PSpace -hard in any other case; besides proving its complexity bounds, we implement a tableau-based satisfiability checker for it and test it against a systematically generated benchmark. Our results are strengthened by showing that not all coarser-than-Allen's relations are a guarantee of decidability, as we prove that the second variant, namely HS 7 , remains undecidable in all interesting cases.

[1]  Davide Bresolin,et al.  DL-Lite and Interval Temporal Logics: a Marriage Proposal , 2014, ECAI.

[2]  Davide Bresolin,et al.  A Tableau System for Right Propositional Neighborhood Logic over Finite Linear Orders: An Implementation , 2013, TABLEAUX.

[3]  Benjamin Charles Moszkowski Reasoning about Digital Circuits , 1983 .

[4]  Albert R. Meyer,et al.  Word problems requiring exponential time(Preliminary Report) , 1973, STOC.

[5]  Davide Bresolin,et al.  Interval temporal logics over strongly discrete linear orders: Expressiveness and complexity , 2014, Theor. Comput. Sci..

[6]  Gabriele Puppis,et al.  A decidable weakening of Compass Logic based on cone-shaped cardinal directions , 2015, Log. Methods Comput. Sci..

[7]  Enrico Franconi,et al.  A Temporal Description Logic for Reasoning about Actions and Plans , 1998, J. Artif. Intell. Res..

[8]  Albrecht Schmiedel,et al.  Temporal Terminological Logic , 1990, AAAI.

[9]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[10]  Szymon Klarman Practical Querying of Temporal Data via OWL 2 QL and SQL: 2011 , 2013, LPAR.

[11]  Fred Zemke What.s new in SQL:2011 , 2012, SGMD.

[12]  Toby Walsh,et al.  The SAT Phase Transition , 1994, ECAI.

[13]  Ricardo A. Baeza-Yates Challenges in the Interaction of Information Retrieval and Natural Language Processing , 2004, CICLing.

[14]  Davide Bresolin,et al.  The light side of interval temporal logic: the Bernays-Schönfinkel fragment of CDT , 2014, 2011 Eighteenth International Symposium on Temporal Representation and Reasoning.

[15]  Yoav Shoham,et al.  A propositional modal logic of time intervals , 1991, JACM.

[16]  Zhou Chaochen,et al.  Duration Calculus: A Formal Approach to Real-Time Systems , 2004 .

[17]  Dominique Longin,et al.  Lotrec : The Generic Tableau Prover for Modal and Description Logics , 2001, IJCAR.

[18]  Reyadh Alluhaibi,et al.  Simple Interval Temporal Logic for Natural Language Assertion Descriptions , 2015, IWCS.

[19]  Ian Pratt-Hartmann,et al.  Temporal prepositions and their logic , 2004, Artif. Intell..

[20]  Davide Bresolin,et al.  Tableaux for Logics of Subinterval Structures over Dense Orderings , 2010, J. Log. Comput..

[21]  Peter Balsiger,et al.  A Benchmark Method for the Propositional Modal Logics K, KT, S4 , 2004, Journal of Automated Reasoning.

[22]  Ron Shamir,et al.  Complexity and algorithms for reasoning about time: a graph-theoretic approach , 1993, JACM.

[23]  Davide Bresolin,et al.  Sub-propositional Fragments of the Interval Temporal Logic of Allen's Relations , 2014, JELIA.

[24]  Jan Chomicki,et al.  Temporal Logic in Information Systems , 1998, Logics for Databases and Information Systems.

[25]  Davide Bresolin,et al.  Decidable and Undecidable Fragments of Halpern and Shoham's Interval Temporal Logic: Towards a Complete Classification , 2008, LPAR.

[26]  Valentin Goranko,et al.  Propositional Interval Neighborhood Temporal Logics , 2003, J. Univers. Comput. Sci..

[27]  Gabriele Puppis,et al.  Maximal Decidable Fragments of Halpern and Shoham's Modal Logic of Intervals , 2010, ICALP.

[28]  Davide Bresolin,et al.  Horn Fragments of the Halpern-Shoham Interval Temporal Logic , 2016, ACM Trans. Comput. Log..

[29]  Jakub Michaliszyn,et al.  The Undecidability of the Logic of Subintervals , 2014, Fundam. Informaticae.

[30]  Maarten Marx,et al.  Undecidability of Compass Logic , 1999, J. Log. Comput..

[31]  Davide Bresolin,et al.  On the Complexity of Fragments of the Modal Logic of Allen's Relations over Dense Structures , 2015, LATA.

[32]  Renate A. Schmidt,et al.  The Tableau Prover Generator MetTeL2 , 2012, JELIA.

[33]  Angelo Montanari,et al.  Decidability of the Logics of the Reflexive Sub-interval and Super-interval Relations over Finite Linear Orders , 2010, 2010 17th International Symposium on Temporal Representation and Reasoning.

[34]  Yuri Gurevich,et al.  The Classical Decision Problem , 1997, Perspectives in Mathematical Logic.

[35]  Alessandro Artale,et al.  A Cookbook for Temporal Conceptual Data Modelling with Description Logics , 2012, TOCL.

[36]  Angelo Montanari,et al.  Checking interval properties of computations , 2014, Acta Informatica.

[37]  Guido Sciavicco,et al.  Decidability of Interval Temporal Logics over Split-Frames via Granularity , 2002, JELIA.

[38]  Valentin Goranko,et al.  A complete classification of the expressiveness of interval logics of Allen’s relations: the general and the dense cases , 2016, Acta Informatica.

[39]  Alessandro Artale,et al.  Tractable Interval Temporal Propositional and Description Logics , 2015, AAAI.

[40]  Claudio Bettini,et al.  Time-Dependent Concepts: Representation and Reasoning Using Temporal Description Logics , 1997, Data Knowl. Eng..

[41]  Davide Bresolin,et al.  The dark side of interval temporal logic: marking the undecidability border , 2013, Annals of Mathematics and Artificial Intelligence.

[42]  Yde Venema,et al.  Expressiveness and Completeness of an Interval Tense Logic , 1990, Notre Dame J. Formal Log..