Exact Splitting Methods for Kinetic and Schrödinger Equations
暂无分享,去创建一个
[1] Zhennan Zhou,et al. A semi-Lagrangian time splitting method for the Schrödinger equation with vector potentials , 2013, Commun. Inf. Syst..
[2] Xavier Antoine,et al. GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations I: Computation of stationary solutions , 2014, Comput. Phys. Commun..
[3] G. Quispel,et al. Splitting methods , 2002, Acta Numerica.
[4] Hanquan Wang,et al. An efficient and spectrally accurate numerical method for computing dynamics of rotating Bose-Einstein condensates , 2006, J. Comput. Phys..
[5] Christophe Besse,et al. Communi-cations Computational methods for the dynamics of the nonlinear Schr̈odinger / Gross-Pitaevskii equations , 2013 .
[6] Xavier Antoine,et al. GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations II: Dynamics and stochastic simulations , 2015, Comput. Phys. Commun..
[7] Qiang Du,et al. Dynamics of Rotating Bose-Einstein Condensates and its Efficient and Accurate Numerical Computation , 2006, SIAM J. Appl. Math..
[8] Jerrold E. Marsden,et al. Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems , 1999 .
[9] Geneviève Dujardin,et al. High Order Exponential Integrators for Nonlinear Schrödinger Equations with Application to Rotating Bose-Einstein Condensates , 2015, SIAM J. Numer. Anal..
[10] Guillaume Dujardin,et al. Coercivity, hypocoercivity, exponential time decay and simulations for discrete Fokker–Planck equations , 2018, Numerische Mathematik.
[11] L. Hörmander. The Analysis of Linear Partial Differential Operators III , 2007 .
[12] William F. Eddy,et al. Rotation of 3D volumes by Fourier-interpolated shears , 2006, Graph. Model..
[13] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[14] F. Hérau,et al. Tunnel Effect for Kramers–Fokker–Planck Type Operators , 2007, math/0703684.
[15] N. Raymond. Bound States of the Magnetic Schrodinger Operator , 2017 .
[16] L. Hörmander. Symplectic classification of quadratic forms, and general Mehler formulas , 1995 .
[17] Arie E. Kaufman,et al. 3D Volume Rotation Using Shear Transformations , 2000, Graph. Model..
[18] Nicolas Besse,et al. Convergence of classes of high-order semi-Lagrangian schemes for the Vlasov-Poisson system , 2008, Math. Comput..
[19] F. Hérau,et al. Tunnel effect for Kramers-Fokker-Planck type operators: return to equilibrium and applications , 2008, 0801.3615.
[20] Rong Zeng,et al. Efficiently computing vortex lattices in rapid rotating Bose-Einstein condensates , 2009, Comput. Phys. Commun..
[21] Jakob Ameres,et al. Splitting methods for Fourier spectral discretizations of the strongly magnetized Vlasov-Poisson and the Vlasov-Maxwell system , 2019, ArXiv.
[22] Chiara Piazzola,et al. A splitting approach for the magnetic Schrödinger equation , 2016, J. Comput. Appl. Math..
[23] Laurent Thomann,et al. On global existence and trend to the equilibrium for the Vlasov-Poisson-Fokker-Planck system with exterior confining potential , 2015, 1505.01698.