Exact Splitting Methods for Kinetic and Schrödinger Equations

In (Bernier in Exact splitting methods for semigroups generated by inhomogeneous quadratic differential operators. arXiv:1912.13219 , (2019)), some exact splittings are proposed for inhomogeneous quadratic differential equations including, for example, transport equations, Fokker–Planck equations, and Schrödinger type equations with an angular momentum rotation term. In this work, these exact splittings are used combined with pseudo-spectral methods in space. High accuracy and efficiency of exact splitting methods are illustrated and comparison are performed with the numerical methods in literature. We show that our methods can be used to improve significantly some classical splitting methods for some nonlinear or non-quadratic equations.

[1]  Zhennan Zhou,et al.  A semi-Lagrangian time splitting method for the Schrödinger equation with vector potentials , 2013, Commun. Inf. Syst..

[2]  Xavier Antoine,et al.  GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations I: Computation of stationary solutions , 2014, Comput. Phys. Commun..

[3]  G. Quispel,et al.  Splitting methods , 2002, Acta Numerica.

[4]  Hanquan Wang,et al.  An efficient and spectrally accurate numerical method for computing dynamics of rotating Bose-Einstein condensates , 2006, J. Comput. Phys..

[5]  Christophe Besse,et al.  Communi-cations Computational methods for the dynamics of the nonlinear Schr̈odinger / Gross-Pitaevskii equations , 2013 .

[6]  Xavier Antoine,et al.  GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations II: Dynamics and stochastic simulations , 2015, Comput. Phys. Commun..

[7]  Qiang Du,et al.  Dynamics of Rotating Bose-Einstein Condensates and its Efficient and Accurate Numerical Computation , 2006, SIAM J. Appl. Math..

[8]  Jerrold E. Marsden,et al.  Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems , 1999 .

[9]  Geneviève Dujardin,et al.  High Order Exponential Integrators for Nonlinear Schrödinger Equations with Application to Rotating Bose-Einstein Condensates , 2015, SIAM J. Numer. Anal..

[10]  Guillaume Dujardin,et al.  Coercivity, hypocoercivity, exponential time decay and simulations for discrete Fokker–Planck equations , 2018, Numerische Mathematik.

[11]  L. Hörmander The Analysis of Linear Partial Differential Operators III , 2007 .

[12]  William F. Eddy,et al.  Rotation of 3D volumes by Fourier-interpolated shears , 2006, Graph. Model..

[13]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[14]  F. Hérau,et al.  Tunnel Effect for Kramers–Fokker–Planck Type Operators , 2007, math/0703684.

[15]  N. Raymond Bound States of the Magnetic Schrodinger Operator , 2017 .

[16]  L. Hörmander Symplectic classification of quadratic forms, and general Mehler formulas , 1995 .

[17]  Arie E. Kaufman,et al.  3D Volume Rotation Using Shear Transformations , 2000, Graph. Model..

[18]  Nicolas Besse,et al.  Convergence of classes of high-order semi-Lagrangian schemes for the Vlasov-Poisson system , 2008, Math. Comput..

[19]  F. Hérau,et al.  Tunnel effect for Kramers-Fokker-Planck type operators: return to equilibrium and applications , 2008, 0801.3615.

[20]  Rong Zeng,et al.  Efficiently computing vortex lattices in rapid rotating Bose-Einstein condensates , 2009, Comput. Phys. Commun..

[21]  Jakob Ameres,et al.  Splitting methods for Fourier spectral discretizations of the strongly magnetized Vlasov-Poisson and the Vlasov-Maxwell system , 2019, ArXiv.

[22]  Chiara Piazzola,et al.  A splitting approach for the magnetic Schrödinger equation , 2016, J. Comput. Appl. Math..

[23]  Laurent Thomann,et al.  On global existence and trend to the equilibrium for the Vlasov-Poisson-Fokker-Planck system with exterior confining potential , 2015, 1505.01698.