Some new integrable nonlinear evolution equations and Darboux transformation

Two classes of new nonlinear evolution equations are derived with the aid of a 4×4 matrix spectral problem with three potentials. A Darboux transformation for the first nontrivial nonlinear evolution equation is given based on the gauge transformation between the corresponding 4×4 matrix spectral problems. As an application of the Darboux transformation, some explicit solutions of the nontrivially nonlinear evolution equation are obtained.

[1]  Ryogo Hirota,et al.  A coupled KdV equation is one case of the four-reduction of the KP hierarchy , 1982 .

[2]  Tu Gui-Zhang,et al.  On Liouville integrability of zero-curvature equations and the Yang hierarchy , 1989 .

[3]  P. Clarkson,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering: References , 1991 .

[4]  Dogan Kaya,et al.  Solitary wave solutions for a generalized Hirota-Satsuma coupled KdV equation , 2004, Appl. Math. Comput..

[5]  Gu Chaohao,et al.  On Darboux transformations for soliton equations in high-dimensional spacetime , 1994 .

[6]  Mark J. Ablowitz,et al.  Solitons and the Inverse Scattering Transform , 1981 .

[7]  R. Hirota,et al.  Soliton solutions of a coupled Korteweg-de Vries equation , 1981 .

[8]  Xianguo Geng,et al.  Darboux Transformation and Soliton Solutions for Generalized Nonlinear Schrödinger Equations , 1999 .

[9]  V. Matveev,et al.  Darboux Transformations and Solitons , 1992 .

[10]  Davood Domiri Ganji,et al.  Solitary wave solutions for a generalized Hirota–Satsuma coupled KdV equation by homotopy perturbation method , 2006 .

[11]  Qi Wang,et al.  The extended Jacobi elliptic function method to solve a generalized Hirota–Satsuma coupled KdV equations , 2005 .

[12]  Xianguo Geng,et al.  Darboux transformation for a generalized Hirota-Satsuma coupled Korteweg-de Vries equation. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Q. P. Liu,et al.  New Darboux transformation for Hirota–Satsuma coupled KdV system , 2002 .

[14]  Allan P. Fordy,et al.  On the integrability of a system of coupled KdV equations , 1982 .

[15]  N. V. Ustinov,et al.  Darboux transforms, deep reductions and solitons , 1993 .

[16]  Decio Levi,et al.  A hierarchy of coupled Korteweg-de Vries equations , 1983 .

[17]  E. Fan,et al.  Soliton solutions for a generalized Hirota–Satsuma coupled KdV equation and a coupled MKdV equation , 2001 .

[18]  X. Geng,et al.  New finite-dimensional integrable systems and explicit solutions of Hirota–Satsuma coupled Kortweg–de Vries equation , 1997 .

[19]  G. Wilson,et al.  The affine lie algebra C(1)2 and an equation of Hirota and Satsuma , 1982 .

[20]  Xianguo Geng,et al.  A generalized Hirota–Satsuma coupled Korteweg–de Vries equation and Miura transformations , 1999 .

[21]  A. Chowdhury,et al.  On the complete solution of the Hirota-Satsuma system through the 'dressing' operator technique , 1984 .

[22]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[23]  Decio Levi,et al.  On a new Darboux transformation for the construction of exact solutions of the Schrodinger equation , 1988 .

[24]  Xianguo Geng,et al.  Decomposition of the (2 + 1)- dimensional Gardner equation and its quasi-periodic solutions , 2001 .

[25]  Li Yishen The reductions of the Darboux transformation and some solutions of the soliton equations , 1996 .

[26]  S. Novikov,et al.  Theory of Solitons: The Inverse Scattering Method , 1984 .

[27]  David J. Kaup,et al.  On the Inverse Scattering Problem for Cubic Eigenvalue Problems of the Class ψxxx + 6Qψx + 6Rψ = λψ , 1980 .

[28]  Khaled A. Gepreel,et al.  On the solitary wave solutions for nonlinear Hirota–Satsuma coupled KdV of equations , 2004 .

[29]  D. J. Kaup,et al.  The Three-Wave Interaction-A Nondispersive Phenomenon , 1976 .

[30]  Allan P. Fordy,et al.  Factorization of operators.II , 1981 .