Research Article: On Extending Primal-Dual Interior-Point Method for Linear Optimization to Convex Quadratic Symmetric Cone Optimization

In this article, we generalize primal-dual interior-point method, which was studied by Bai et al. [3] for linear optimization, to convex quadratic optimization over symmetric cone. The symmetrization of the search directions used in this article is based on the Nesterov and Todd scaling scheme. By employing Euclidean Jordan algebras, we derive the iteration bounds that match the currently best known iteration bounds for large- and small-update methods, namely, and , respectively, which are as good as the ones for the linear optimization analogue. Moreover, this unifies the analysis for linear optimization, convex quadratic optimization, second-order cone optimization, semidefinite optimization, convex quadratic semidefinite optimization, and symmetric optimization.

[1]  Trond Steihaug,et al.  A generic primal–dual interior-point method for semidefinite optimization based on a new class of kernel functions , 2010, Optim. Methods Softw..

[2]  Levent Tunçel,et al.  Generalization of Primal—Dual Interior-Point Methods to Convex Optimization Problems in Conic Form , 2001, Found. Comput. Math..

[3]  M. Zangiabadi,et al.  FULL NESTEROV-TODD STEP INTERIOR-POINT METHODS FOR SYMMETRIC OPTIMIZATION , 2008 .

[4]  Kees Roos,et al.  A Comparative Study of Kernel Functions for Primal-Dual Interior-Point Algorithms in Linear Optimization , 2004, SIAM J. Optim..

[5]  Adam Korányi,et al.  Monotone functions on formally real Jordan algebras , 1984 .

[6]  Kees Roos,et al.  A New Efficient Large-Update Primal-Dual Interior-Point Method Based on a Finite Barrier , 2002, SIAM J. Optim..

[7]  Kees Roos,et al.  Primal-Dual Interior-Point Algorithms for Semidefinite Optimization Based on a Simple Kernel Function , 2005, J. Math. Model. Algorithms.

[8]  Jiming Peng,et al.  Primal-Dual Interior-Point Methods for Second-Order Conic Optimization Based on Self-Regular Proximities , 2002, SIAM J. Optim..

[9]  Yan-Qin Bai,et al.  A New Full Nesterov–Todd Step Primal–Dual Path-Following Interior-Point Algorithm for Symmetric Optimization , 2012, Journal of Optimization Theory and Applications.

[10]  Guoyong Gu,et al.  Full Nesterov-Todd step infeasible interior-point method for symmetric optimization , 2011, Eur. J. Oper. Res..

[11]  L. Faybusovich Euclidean Jordan Algebras and Interior-point Algorithms , 1997 .

[12]  L. Faybusovich A Jordan-algebraic approach to potential-reduction algorithms , 2002 .

[13]  Bharath Kumar Rangarajan,et al.  Polynomial Convergence of Infeasible-Interior-Point Methods over Symmetric Cones , 2006, SIAM J. Optim..

[14]  G. Q. Wang,et al.  Primal-dual interior-point algorithm for convex quadratic semi-definite optimization , 2009 .

[15]  Farid Alizadeh,et al.  Extension of primal-dual interior point algorithms to symmetric cones , 2003, Math. Program..

[16]  Donald Goldfarb,et al.  Second-order cone programming , 2003, Math. Program..

[17]  Guoqiang Wang,et al.  Complexity analysis and numerical implementation of primal-dual interior-point methods for convex quadratic optimization based on a finite barrier , 2012, Numerical Algorithms.

[18]  Jiming Peng,et al.  Self-regular functions and new search directions for linear and semidefinite optimization , 2002, Math. Program..

[19]  K. Toh,et al.  A polynomial-time inexact primal-dual infeasible path-following algorithm for convex quadratic SDP , 2008 .

[20]  Yan-Qin Bai,et al.  Polynomial interior-point algorithms for P*(k) horizontal linear complementarity problem , 2009, J. Comput. Appl. Math..

[21]  Kim-Chuan Toh,et al.  An inexact primal–dual path following algorithm for convex quadratic SDP , 2007, Math. Program..

[22]  Renato D. C. Monteiro,et al.  Interior path following primal-dual algorithms. part II: Convex quadratic programming , 1989, Math. Program..

[23]  Michael J. Todd,et al.  Primal-Dual Interior-Point Methods for Self-Scaled Cones , 1998, SIAM J. Optim..

[24]  Manuel V. C. Vieira,et al.  Jordan algebraic approach to symmetric optimization , 2007 .

[25]  M. Baes Convexity and differentiability properties of spectral functions and spectral mappings on Euclidean Jordan algebras , 2007 .

[26]  Michael J. Todd,et al.  Self-Scaled Barriers and Interior-Point Methods for Convex Programming , 1997, Math. Oper. Res..

[27]  Yanqin Bai,et al.  A full-Newton step interior-point algorithm for symmetric cone convex quadratic optimization , 2011 .

[28]  Ya-Xiang Yuan,et al.  A Predictor–Corrector Algorithm for QSDP Combining Dikin-Type and Newton Centering Steps , 2001, Ann. Oper. Res..

[29]  K. Toh,et al.  A polynomial-time inexact interior-point method for convex quadratic symmetric cone programming , 2010 .

[30]  Trond Steihaug,et al.  A polynomial-time algorithm for linear optimization based on a new class of kernel functions , 2009 .

[31]  M. Muramatsu On a Commutative Class of Search Directions for Linear Programming over Symmetric Cones , 2002 .