A Review of Graphene‐Based Electrochemical Microsupercapacitors

The rapid development of miniaturized electronic devices has led to a growing need for rechargeable micropower sources with high performance. Among different sources, electrochemical microcapacitors or microsupercapacitors provide higher power density than their counterparts and are gaining increased interest from the research and engineering communities. To date, little work has appeared on the integration of microsupercapacitors onto a chip or flexible substrates. This review provides an overview of research on microsupercapacitors, with particular emphasis on state-of-the-art graphene-based electrodes and solid-state devices on both flexible and rigid substrates. The advantages, disadvantages, and performance of graphene-based microsupercapacitors are summarized and new trends in materials, fabrication and packaging are identified.

[1]  Bruno Scrosati,et al.  Solid-state, polymer-based, redox capacitors , 1996 .

[2]  Alberto Pique,et al.  Direct-write of sensor devices by a laser forward transfer technique , 2002, SPIE LASE.

[3]  Pratik J. Shah,et al.  Ink-Jet Printing of Catalyst Patterns for Electroless Metal Deposition , 1999 .

[4]  Hua Zhang,et al.  Graphene-based composites. , 2012, Chemical Society reviews.

[5]  Albert Migliori,et al.  Molecular simulation of electric double-layer capacitors based on carbon nanotube forests. , 2009, Journal of the American Chemical Society.

[6]  C. G. Zoski Ultramicroelectrodes: Design, Fabrication, and Characterization , 2002 .

[7]  Yi Shi,et al.  Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. , 2010, ACS nano.

[8]  Fang Liu,et al.  Graphitization of n-type polycrystalline silicon carbide for on-chip supercapacitor application , 2011 .

[9]  Jingsong Huang,et al.  A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. , 2008, Chemistry.

[10]  Doron Aurbach,et al.  Carbon Electrodes for Double‐Layer Capacitors I. Relations Between Ion and Pore Dimensions , 2000 .

[11]  S. Dou,et al.  Paper-like free-standing polypyrrole and polypyrrole-liFePO4 composite films for flexible and bendable rechargeable battery , 2008 .

[12]  B. H. Weiller,et al.  Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices. , 2012, ACS nano.

[13]  W. A. Adams,et al.  Electrochemical efficiency in multiple discharge/recharge cycling of supercapacitors in hybrid EV applications , 1999 .

[14]  Danilo De Rossi,et al.  Microfabrication of conducting polymer devices by ink-jet stereolithography , 1998 .

[15]  Mitsuhiro Nakamura,et al.  Influence of physical properties of activated carbons on characteristics of electric double-layer capacitors , 1996 .

[16]  Y. Shim,et al.  Nanoporous carbon supercapacitors in an ionic liquid: a computer simulation study. , 2010, ACS nano.

[17]  Jan Herrmann,et al.  Inkjet-printed gold nanoparticle chemiresistors: influence of film morphology and ionic strength on the detection of organics dissolved in aqueous solution. , 2009, Analytica chimica acta.

[18]  David Blaauw,et al.  A fully integrated microbattery for an implantable microelectromechanical system , 2008 .

[19]  Jianjun Niu,et al.  Requirements for performance characterization of C double-layer supercapacitors: Applications to a high specific-area C-cloth material , 2006 .

[20]  Hang Shi,et al.  Studies of activated carbons used in double-layer capacitors , 1998 .

[21]  J. Heremans,et al.  Electronic properties of carbon nanotubes: Experimental results , 1995 .

[22]  P. Ajayan,et al.  Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. , 2011, Nature nanotechnology.

[23]  Lili Zhang,et al.  Graphene-based materials as supercapacitor electrodes , 2010 .

[24]  Maria Forsyth,et al.  Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors , 2007 .

[25]  Yi Cui,et al.  Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. , 2011, Nano letters.

[26]  H. Lezec,et al.  Electrical conductivity of individual carbon nanotubes , 1996, Nature.

[27]  M. Ishikawa,et al.  Application of proton conducting polymeric electrolytes to electrochemical capacitors , 2004 .

[28]  Alicia M. Oickle,et al.  Effect of Fe-contamination on rate of self-discharge in carbon-based aqueous electrochemical capacitors , 2009 .

[29]  M. Dresselhaus,et al.  C60-related tubules , 1992 .

[30]  Hang Shi,et al.  Activated carbons and double layer capacitance , 1996 .

[31]  Jang Sub Kim,et al.  Ink-jet printing of cu-ag-based highly conductive tracks on a transparent substrate. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[32]  Norbert Fabre,et al.  Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor , 2010 .

[33]  Satoshi Kawata,et al.  Finer features for functional microdevices , 2001, Nature.

[34]  L. Nyholm,et al.  Toward Flexible Polymer and Paper‐Based Energy Storage Devices , 2011, Advanced materials.

[35]  M. Dresselhaus,et al.  Electronic structure of double‐layer graphene tubules , 1993 .

[36]  B. Conway Transition from “Supercapacitor” to “Battery” Behavior in Electrochemical Energy Storage , 1991 .

[37]  R. Ruoff,et al.  Carbon-Based Supercapacitors Produced by Activation of Graphene , 2011, Science.

[38]  Chi-Hwan Han,et al.  All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes , 2012, Nanotechnology.

[39]  Y. Gogotsi,et al.  True Performance Metrics in Electrochemical Energy Storage , 2011, Science.

[40]  G. Whitesides,et al.  Micromolding of Polymers in Capillaries: Applications in Microfabrication , 1996 .

[41]  Andreas Nieder,et al.  Miniature stereo radio transmitter for simultaneous recording of multiple single-neuron signals from behaving owls , 2000, Journal of Neuroscience Methods.

[42]  K. Komvopoulos,et al.  Femtosecond laser aperturless near-field nanomachining of metals assisted by scanning probe microscopy , 2003 .

[43]  Jeffrey D. Morse,et al.  Micro‐fuel cell power sources , 2007 .

[44]  Mianqi Xue,et al.  Structure‐Based Enhanced Capacitance: In Situ Growth of Highly Ordered Polyaniline Nanorods on Reduced Graphene Oxide Patterns , 2012 .

[45]  Ki-Hwan Oh,et al.  A novel concept of hybrid capacitor based on manganese oxide materials , 2007 .

[46]  Weiguo Song,et al.  Microfluidic etching for fabrication of flexible and all-solid-state micro supercapacitor based on MnO2 nanoparticles. , 2011, Nanoscale.

[47]  Lei Zhang,et al.  A review of electrode materials for electrochemical supercapacitors. , 2012, Chemical Society reviews.

[48]  Zhen Cao,et al.  Molecular Dynamic Simulations of Ionic Liquids at Graphite Surface , 2010 .

[49]  D. Tsai,et al.  Planar ultracapacitors of miniature interdigital electrode loaded with hydrous RuO2 and RuO2 nanorods , 2010 .

[50]  Young Soo Yoon,et al.  All solid-state rechargeable thin-film microsupercapacitor fabricated with tungsten cosputtered ruthenium oxide electrodes , 2003 .

[51]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[52]  P. Mohseni,et al.  Wireless multichannel biopotential recording using an integrated FM telemetry circuit , 2005, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[53]  Pooi See Lee,et al.  Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior. , 2010, ACS Nano.

[54]  L. Nyholm,et al.  Ultrafast All-Polymer Paper-Based Batteries , 2009, Nano letters.

[55]  G. Barbastathis,et al.  Origami fabrication of nanostructured, three-dimensional devices: Electrochemical capacitors with carbon electrodes , 2006 .

[56]  Candace K. Chan,et al.  Printable thin film supercapacitors using single-walled carbon nanotubes. , 2009, Nano letters.

[57]  Andreas Züttel,et al.  Investigation of electrochemical double-layer (ECDL) capacitors electrodes based on carbon nanotubes and activated carbon materials , 2003 .

[58]  T. Fisher,et al.  Inkjet printing of palladium alkanethiolates for facile fabrication of metal interconnects and surface-enhanced Raman scattering substrates , 2010 .

[59]  Akihiko Hirata,et al.  Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. , 2011, Nature nanotechnology.

[60]  Xuyuan Chen,et al.  Preparation and characterization of polypyrrole films for three-dimensional micro supercapacitor , 2009 .

[61]  P. Calvert Inkjet Printing for Materials and Devices , 2001 .

[62]  Zheng Yan,et al.  3-Dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. , 2013, Nano letters.

[63]  Jun Chen,et al.  Flexible, aligned carbon nanotube/conducting polymer electrodes for a lithium-ion battery , 2007 .

[64]  N. Munichandraiah,et al.  High capacitance properties of polyaniline by electrochemical deposition on a porous carbon substrate , 2007 .

[65]  Bruce Dunn,et al.  Three-dimensional battery architectures. , 2004, Chemical reviews.

[66]  Brian E. Conway,et al.  Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices , 2003 .

[67]  Oliver G. Schmidt,et al.  Swiss roll nanomembranes with controlled proton diffusion as redox micro-supercapacitors. , 2010, Chemical communications.

[68]  Ran Liu,et al.  Poly(3,4-ethylenedioxythiophene) nanotubes as electrode materials for a high-powered supercapacitor , 2008, Nanotechnology.

[69]  John R. Miller,et al.  Graphene Double-Layer Capacitor with ac Line-Filtering Performance , 2010, Science.

[70]  F. Wei,et al.  Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes , 2010 .

[71]  Markus Antonietti,et al.  High Electroactivity of Polyaniline in Supercapacitors by Using a Hierarchically Porous Carbon Monolith as a Support , 2007 .

[72]  Zhennan Gu,et al.  Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. , 2008, Nano letters.

[73]  B. Sumpter,et al.  Complex capacitance scaling in ionic liquids-filled nanopores. , 2011, ACS nano.

[74]  F. Béguin,et al.  High-voltage asymmetric supercapacitors operating in aqueous electrolyte , 2006 .

[75]  Chi-Chang Hu,et al.  Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. , 2006, Nano letters.

[76]  Pierre-Louis Taberna,et al.  Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory. , 2008, Angewandte Chemie.

[77]  Takeo Yamada,et al.  Extracting the Full Potential of Single‐Walled Carbon Nanotubes as Durable Supercapacitor Electrodes Operable at 4 V with High Power and Energy Density , 2010, Advanced materials.

[78]  Mingjun Zhang,et al.  Bio-Microarray Fabrication Techniques—A Review , 2006, Critical reviews in biotechnology.

[79]  Hao Zhang,et al.  Tube-covering-tube nanostructured polyaniline/carbon nanotube array composite electrode with high capacitance and superior rate performance as well as good cycling stability , 2008 .

[80]  M. Nathan,et al.  Advanced materials for the 3D microbattery , 2006 .

[81]  Kun-Hong Lee,et al.  Fabrication of microcapacitors using conducting polymer microelectrodes , 2003 .

[82]  Hui Tian,et al.  Carbon nanosheets as the electrode material in supercapacitors , 2009 .

[83]  Silvina Cerveny,et al.  Dynamics of Water Intercalated in Graphite Oxide , 2010 .

[84]  D. Pech,et al.  Wafer-level fabrication process for fully encapsulated micro-supercapacitors with high specific energy , 2012 .

[85]  Luzhuo Chen,et al.  Highly flexible and all-solid-state paperlike polymer supercapacitors. , 2010, Nano letters.

[86]  Y. Shao-horn,et al.  Thin films of carbon nanotubes and chemically reduced graphenes for electrochemical micro-capacitors , 2011 .

[87]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[88]  T. Fisher,et al.  Controlled thin graphitic petal growth on oxidized silicon , 2012 .

[89]  F. Béguin,et al.  Carbon materials for the electrochemical storage of energy in capacitors , 2001 .

[90]  Feiyu Kang,et al.  A high-performance three-dimensional micro supercapacitor based on self-supporting composite materia , 2011 .

[91]  Lili Liu,et al.  Aqueous supercapacitors of high energy density based on MoO3 nanoplates as anode material. , 2011, Chemical communications.

[92]  P. Taberna,et al.  Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer , 2006, Science.

[93]  E. Frąckowiak Carbon materials for supercapacitor application. , 2007, Physical chemistry chemical physics : PCCP.

[94]  Gerard Mourou,et al.  Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs , 1994 .

[95]  K. Jiang,et al.  High-performance supercapacitors using a nanoporous current collector made from super-aligned carbon nanotubes , 2010, Nanotechnology.

[96]  Timothy S. Fisher,et al.  MnO2-coated graphitic petals for supercapacitor electrodes , 2013 .

[97]  Anran Liu,et al.  Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. , 2010, ACS nano.

[98]  M. Beidaghi,et al.  Micro‐Supercapacitors Based on Interdigital Electrodes of Reduced Graphene Oxide and Carbon Nanotube Composites with Ultrahigh Power Handling Performance , 2012 .

[99]  G. Chen,et al.  Theoretical specific capacitance based on charge storage mechanisms of conducting polymers: comment on 'Vertically oriented arrays of polyaniline nanorods and their super electrochemical properties'. , 2011, Chemical communications.

[100]  Kun-Hong Lee,et al.  Flexible micro-supercapacitors , 2006 .

[101]  Tomi Mattila,et al.  Electrical sintering of nanoparticle structures , 2008, Nanotechnology.

[102]  A. Burke Ultracapacitors: why, how, and where is the technology , 2000 .

[103]  Kun-Hong Lee,et al.  Fabrication of all-solid-state electrochemical microcapacitors , 2004 .

[104]  Xuyuan Chen,et al.  Fabrication and tests of a novel three dimensional micro supercapacitor , 2009 .

[105]  Catia Arbizzani,et al.  Polymer-based supercapacitors , 2001 .

[106]  A. Best,et al.  Conducting-polymer-based supercapacitor devices and electrodes , 2011 .

[107]  S. Pitchumani,et al.  New symmetric and asymmetric supercapacitors based on high surface area porous nickel and activated carbon , 2006 .

[108]  Hao Zhang,et al.  Electrochemical properties of ultra-long, aligned, carbon nanotube array electrode in organic electrolyte , 2007 .

[109]  D. Tsai,et al.  Electrochemical micro-capacitors of patterned electrodes loaded with manganese oxide and carbon nano , 2011 .

[110]  Wei Sun,et al.  Symmetric redox supercapacitor based on micro-fabrication with three-dimensional polypyrrole electrodes , 2010 .

[111]  Wei Chen,et al.  Design, fabrication, and evaluation of on-chip micro-supercapacitors , 2011, Defense + Commercial Sensing.

[112]  Peihua Huang,et al.  Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. , 2010, Nature nanotechnology.

[113]  B. Jang,et al.  Graphene-based supercapacitor with an ultrahigh energy density. , 2010, Nano letters.

[114]  John Newman,et al.  The Influence of Side Reactions on the Performance of Electrochemical Double‐Layer Capacitors , 1996 .

[115]  R. Ruoff,et al.  Graphene-based ultracapacitors. , 2008, Nano letters.

[116]  G. Chiu,et al.  Bifurcation-based mass sensing using piezoelectrically-actuated microcantilevers , 2011 .

[117]  Yihong Wu,et al.  Fabrication of a Class of Nanostructured Materials Using Carbon Nanowalls as the Templates , 2002 .

[118]  Ann Marie Sastry,et al.  Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems , 2008 .

[119]  Alberto Pique,et al.  Direct writing of planar ultracapacitors by laser forward transfer processing , 2002, SPIE LASE.

[120]  G. Lu,et al.  Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode. , 2009, ACS nano.

[121]  H. H Rehan,et al.  A new polymer/polymer rechargeable battery: polyaniline/LiClO4(MeCN)/poly-1-naphthol , 2003 .

[122]  Chunlei Wang,et al.  Integration of Carbon Nanotubes to C-MEMS for On-chip Supercapacitors , 2010, IEEE Transactions on Nanotechnology.

[123]  Bruno Scrosati,et al.  A New, Safe, High‐Rate and High‐Energy Polymer Lithium‐Ion Battery , 2009, Advanced materials.

[124]  Yanwu Zhu,et al.  Reduction Kinetics of Graphene Oxide Determined by Electrical Transport Measurements and Temperature Programmed Desorption , 2009 .

[125]  C. R. Johnson,et al.  Limiting factors for carbon-based chemical double-layer capacitors , 1994 .

[126]  Daniel A. Steingart,et al.  Tailoring Electrochemical Capacitor Energy Storage Using Direct Write Dispenser Printing , 2008 .

[127]  Y. Tsai,et al.  Electrochemically synthesized graphene/polypyrrole composites and their use in supercapacitor , 2012 .

[128]  Brendan O'Flynn,et al.  A MEMS-based wireless multisensor module for environmental monitoring , 2008, Microelectron. Reliab..

[129]  Chunlei Wang,et al.  Micro-supercapacitors based on three dimensional interdigital polypyrrole/C-MEMS electrodes , 2011 .

[130]  M. El‐Kady,et al.  Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors , 2012, Science.

[131]  A. Stephan,et al.  Review on gel polymer electrolytes for lithium batteries , 2006 .

[132]  P. Simon,et al.  Polythiophene-based supercapacitors , 1999 .

[133]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[134]  M. Esashi,et al.  Wafer level packaging of MEMS , 2008, TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference.

[135]  K. Jurewicz,et al.  KOH activated carbon fabrics as supercapacitor material , 2004 .

[136]  Dong Young Kim,et al.  Carbon nanofibre/hydrous RuO2 nanocomposite electrodes for supercapacitors , 2007 .

[137]  B. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications , 1999 .

[138]  B. Sumpter,et al.  Atomistic Insight on the Charging Energetics in Subnanometer Pore Supercapacitors , 2010 .

[139]  S. D. Jones,et al.  A microfabricated solid-state secondary Li battery , 1996 .

[140]  Maria Angeles Lillo-Rodenas,et al.  Understanding chemical reactions between carbons and NaOH and KOH: An insight into the chemical activation mechanism , 2003 .

[141]  Mathieu Toupin,et al.  Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor , 2004 .

[142]  Deyang Qu,et al.  Studies of the activated carbons used in double-layer supercapacitors , 2002 .

[143]  Peng Chen,et al.  Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications. , 2010, ACS nano.

[144]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[145]  Changhong Liu,et al.  Flexible carbon nanotube/polyaniline paper-like films and their enhanced electrochemical properties , 2009 .

[146]  Derek Graham,et al.  Conductive Copper and Nickel Lines via Reactive Inkjet Printing , 2009, NIP & Digital Fabrication Conference.

[147]  P. Taberna,et al.  Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors , 2010, Science.

[148]  W. Whang,et al.  Deposition of Carbon Nanowall Flowers on Two-Dimensional Sheet for Electrochemical Capacitor Application , 2009 .

[149]  F. Wei,et al.  Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance , 2010 .

[150]  John R Miller,et al.  Valuing Reversible Energy Storage , 2012, Science.

[151]  P. Novák,et al.  Electrochemically Active Polymers for Rechargeable Batteries. , 1997, Chemical reviews.

[152]  George M. Whitesides,et al.  Micromolding in Capillaries: Applications in Materials Science , 1996 .

[153]  M. El‐Kady,et al.  Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage , 2013, Nature Communications.

[154]  Aifang Yu,et al.  An All‐Solid‐State Flexible Micro‐supercapacitor on a Chip , 2011 .

[155]  A. Hollenkamp,et al.  Carbon properties and their role in supercapacitors , 2006 .

[156]  Chunlei Wang,et al.  Electrochemically activated carbon micro-electrode arrays for electrochemical micro-capacitors , 2011 .

[157]  Mathieu Toupin,et al.  A Hybrid Activated Carbon-Manganese Dioxide Capacitor using a Mild Aqueous Electrolyte , 2004 .

[158]  D. Lewis,et al.  Ink-jet fabrication of electronic components , 2007 .

[159]  Jeffrey W Long,et al.  Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. , 2007, Nano letters.

[160]  M. Morita,et al.  Electrochemical characterization of new electric double layer capacitor with polymer hydrogel electrolyte , 2003 .

[161]  D. Y. Kim,et al.  Supercapacitive properties of polyaniline/Nafion/hydrous RuO2 composite electrodes , 2007 .

[162]  Chia-Chun Chen,et al.  Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance , 2010 .

[163]  P. Ajayan,et al.  Ultrathin planar graphene supercapacitors. , 2011, Nano letters.

[164]  F. Béguin,et al.  Nanotubular materials for supercapacitors , 2001 .

[165]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[166]  Jixiao Wang,et al.  Theoretical and experimental specific capacitance of polyaniline in sulfuric acid , 2009 .

[167]  T. Matsue,et al.  Electrochemical preparation of ultrathin polypyrrole film at microarray electrodes , 1991 .

[168]  E. Mazur,et al.  Femtosecond laser micromachining in transparent materials , 2008 .

[169]  V. Ruiz,et al.  Activated carbon produced from Sasol-Lurgi gasifier pitch and its application as electrodes in supercapacitors , 2006 .

[170]  Justin C. Lytle,et al.  Multifunctional 3D nanoarchitectures for energy storage and conversion. , 2009, Chemical Society reviews.

[171]  Hong-Bo Sun,et al.  Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction , 2010 .