Adaptive mesh refinement in the finite element computation of magnetic fields

Adaptive mesh refinement has the potential of making the finite element computation of magnetic field problems completely automatic. In adaptive procedures, the field problem is solved iteratively, beginning with a coarse mesh and refining it in locations of greatest error. Methods of mesh refinement for triangular finite element grids are surveyed and the use of local error estimates in the adaptive process is described. It is concluded that the Delaunay triangulation provides the best method of mesh refinement, while complementary variational principles provide accurate error bounds on the solution.

[1]  William H. Frey,et al.  An apporach to automatic three‐dimensional finite element mesh generation , 1985 .

[2]  D. F. Watson Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..

[3]  G. Molinari,et al.  Finite difference and finite element grid optimization by the grid iteration method , 1983 .

[4]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[5]  P. Hammond,et al.  Fast numerical method for calculation of electric and magnetic fields based on potential-flux duality , 1985 .

[6]  J. Penman,et al.  Dual and complementary energy methods in electromagnetism , 1983 .

[7]  Robin Sibson,et al.  Locally Equiangular Triangulations , 1978, Comput. J..

[8]  D. Lindholm,et al.  Automatic triangular mesh generation on surfaces of polyhedra , 1983 .

[9]  P. Hammond,et al.  Calculation of inductance and capaci-tance by means of dual energy principles , 1976 .

[10]  J. N. Reddy,et al.  On dual-complementary variational principles in mathematical physics , 1974 .

[11]  Mark Yerry,et al.  A Modified Quadtree Approach To Finite Element Mesh Generation , 1983, IEEE Computer Graphics and Applications.

[12]  M. Stynes On faster convergence of the bisection method for certain triangles , 1979 .

[13]  N. Anderson,et al.  A variational principle for Maxwell's equations , 1978 .

[14]  N. Anderson,et al.  Complementary variational principles for Maxwell's equations , 1979 .

[15]  On complementary variational principles , 1966 .

[16]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[17]  J. Penman,et al.  Unified approach to problems in electromagnetism , 1984 .

[18]  Z. J. Cendes,et al.  Magnetic field computation using Delaunay triangulation and complementary finite element methods , 1983 .

[19]  N. Anderson,et al.  Variational principles for Maxwell's equations II , 1980 .

[20]  Ivo Babuška,et al.  The Post-Processing Approach in the Finite Element Method. Part 3. A Posteriori Error Estimates and Adaptive Mesh Selection. , 1984 .

[21]  M. Rivara Algorithms for refining triangular grids suitable for adaptive and multigrid techniques , 1984 .

[22]  J. Penman,et al.  Complementary and dual energy finite element principles in magnetostatics , 1982 .

[23]  Z. Cendes,et al.  Complementary error bounds for foolproof finite element mesh generation , 1985 .

[24]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[25]  Adrian Bowyer,et al.  Computing Dirichlet Tessellations , 1981, Comput. J..