Shock compression of zirconia ZrO2 and zircon ZrSiO4 in the pressure range up to 150 GPa

The shock compression state of zirconia ZrO2 and zircon ZrSiO4 in the pressure range up to 150 GPa (1.5 Mbar) are studied on the basis of the measurements of shock velocities, particle-velocity histories, free surface motions, and electrical conductivities. Zircon transforms, and zirconia probably does, to high pressure phases up to 90 GPa. The shock velocity (Us) — particle velocity (Up) Hugoniots can be described as Us=4.38+1.37 Upkm/s above 90 GPa for ZrO2, and Us=6.50+0.49 Upkm/s (mixed phase region), and Us=1.54+2.30 Upkm/s (high pressure phase region) for ZrSiO4. The corrected isothermal densities of the high pressure phase ZrSiO4 are roughly consistent with the isothermal ones of mixtures of ZrO2 and SiO2. Bulk sound velocities in the high-pressure phase region of these oxides are discussed in comparison with other dioxides. Electrical conductivities of these oxides increase from lower than 10−12 S/m to greater than 100 S/m in the shock-stress range up to 70 GPa, and remain as constant values up to higher than 100 GPa.

[1]  R. Mcqueen,et al.  SHOCK-WAVE COMPRESSIONS OF TWENTY-SEVEN METALS. EQUATIONS OF STATE OF METALS , 1957 .

[2]  Hitoshi Mizutani,et al.  Elastic‐wave velocities of polycrystalline stishovite , 1972 .

[3]  D. Stöffler,et al.  Electrical conductivity of dunite during shock compression from 12.5 to 45 GPa , 1978 .

[4]  T. Mashimo,et al.  A Measurement System for Interior Projectile Motion and Particle-Velocity Histories for Impact Shock Study with a Two-Stage Light Gas Gun , 1981 .

[5]  J. C. Jamieson,et al.  Pressure dependence of the elastic constants of nonmetamict zircon , 1978 .

[6]  M. Fujita,et al.  Flash Radiographic Study of Shock Wave Propagation in Laminated Composites , 1978 .

[7]  T. Ahrens,et al.  Post-shock temperatures in minerals , 1979 .

[8]  J. C. Jamieson,et al.  Shock-Wave Compression and X-Ray Studies of Titanium Dioxide , 1967, Science.

[9]  Naohiro Soga,et al.  Temperature and pressure derivatives of isotropic sound velocities of α quartz , 1968 .

[10]  Murli H. Manghnani,et al.  Elastic constants of single‐crystal rutile under pressures to 7.5 kilobars , 1969 .

[11]  T. Ahrens,et al.  Electrical conductivity measurement of fayalite under shock compression up to 56 GPa , 1980 .

[12]  K. Kondo,et al.  Magnetoflyer method for measuring gas‐gun projectile velocities , 1977 .

[13]  K. Kondo,et al.  Electrical resistivity and phase transformation of hematite under shock compression , 1980 .

[14]  O. Anderson,et al.  Seismic parameter φ: Computation at very high pressure from laboratory data , 1966 .

[15]  R. Trunin,et al.  Synthesis of a high density phase of silicon dioxide in shock waves , 1973 .

[16]  T. Goto,et al.  Reduction of Shear Strength and Phase-Transition in Shock-Loaded Silicon , 1982 .

[17]  R. Mcqueen,et al.  Compression of Solids by Strong Shock Waves , 1958 .

[18]  Dennis E. Grady,et al.  Shock deformation of brittle solids , 1980 .

[19]  S. P. Marsh,et al.  Equation of State for Nineteen Metallic Elements from Shock‐Wave Measurements to Two Megabars , 1960 .

[20]  D. K. Smith,et al.  The crystal structure of baddeleyite (monoclinic ZrO2) and its relation to the polymorphism of ZrO2 , 1965 .

[21]  H. Schneider,et al.  The disproportionation of andalusite (Al2SiO5) to Al2O3 and SiO2 under shock compression , 1977 .

[22]  T. Ahrens,et al.  Material Strength Effect in the Shock Compression of Alumina , 1968 .

[23]  Lin-Gin Liu High-pressure phase transformations in baddeleyite and zircon, with geophysical implications , 1979 .

[24]  G. Lyzenga,et al.  Multiwavelength optical pyrometer for shock compression experiments. , 1979, The Review of scientific instruments.

[25]  A. L. Frisillo,et al.  Measurement of single‐crystal elastic constants of bronzite as a function of pressure and temperature , 1972 .

[26]  T. Ahrens High‐Pressure Electrical Behavior and Equation of State of Magnesium Oxide from Shock Wave Measurements , 1966 .

[27]  J. Walsh,et al.  EQUATION OF STATE OF METALS FROM SHOCK WAVE MEASUREMENTS , 1955 .

[28]  G. E. Duvall,et al.  Dislocation mechanisms for stress relaxation in shocked LiF , 1975 .

[29]  T. Ahrens,et al.  Electrical measurements on fused quartz under shock compression , 1981 .

[30]  T. Mashimo,et al.  Some physical properties of amorphous SiO2 synthesized by shock compression of α quartz , 1980 .

[31]  H. Takei,et al.  Association Reaction in Forsterite Under Shock Compression , 1981, Science.

[32]  D. Grady,et al.  Quartz to stishovite: Wave propagation in the mixed phase region , 1974 .

[33]  T. Goto,et al.  Intergrowth textures of diaplectic glass and crystal in shock-loaded P-anorthite , 1977 .

[34]  S. P. Marsh,et al.  Hugoniot equation of state of twelve rocks , 1967 .

[35]  Susan Werner Kieffer,et al.  Shock processes in porous quartzite: Transmission electron microscope observations and theory , 1976 .

[36]  K. Kondo,et al.  Method for the measurement of temperature in shock compression of solids , 1980 .

[37]  Jerry Wackerle,et al.  Shock‐Wave Compression of Quartz , 1962 .

[38]  Gene Simmons,et al.  Elasticity of some mantle crystal structures: 2. Rutile GeO2 , 1973 .

[39]  T. Mashimo,et al.  Anisotropic elastic limits and phase transitions of rutile phase TiO2 under shock compression , 1983 .

[40]  Hisao Itô,et al.  Thermal expansion of stishovite , 1974 .

[41]  N. A. Haskell The leakage attenuation of continental crustal P waves , 1966 .