Microfluidic Based Ka-Band Beam-Scanning Focal Plane Array

An eight-element 1-D Ka-band focal plane array (FPA) capable of beam scanning based on microfluidic principles is presented. The FPA is placed at the back surface of an 8-cm-diameter extended hemispherical Rexolite (<formula formulatype="inline"><tex Notation="TeX">$\varepsilon_{\rm r}=2.56$</tex></formula>, <formula formulatype="inline"><tex Notation="TeX">$\tan\delta=0.0026$</tex> </formula>) lens and consists of interconnected microfluidic reservoirs and channels constructed by bonding polydimethylsiloxane (PDMS) (<formula formulatype="inline"> <tex Notation="TeX">$\varepsilon_{\rm r}=2.8$</tex></formula>, <formula formulatype="inline"> <tex Notation="TeX">$\tan\delta=0.02$</tex></formula>) and liquid crystal polymer (LCP) (<formula formulatype="inline"><tex Notation="TeX">$\varepsilon_{\rm r}=2.9$</tex></formula>, <formula formulatype="inline"><tex Notation="TeX">$\tan\delta=0.0025$</tex> </formula>) substrates. The antenna element of the array is a small volume (2.5 <formula formulatype="inline"><tex Notation="TeX">$\mu$</tex></formula>L) of liquid metal residing inside a low-loss Fluorinert FC-77 (<formula formulatype="inline"> <tex Notation="TeX">$\varepsilon_{\rm r}=1.9$</tex></formula>, <formula formulatype="inline"> <tex Notation="TeX">$\tan\delta=0.0005$</tex></formula>) solution. The array beam is scanned by moving the liquid-metal antenna among the reservoirs using an external pump. The proximity-coupled feed network of the array is passive and designed strategically to accommodate the position variation of the liquid-metal antenna element. The array operates with measured <formula formulatype="inline"> <tex Notation="TeX">$7^{\circ}$</tex></formula> half-power beamwidth (HPBW), <formula formulatype="inline"><tex Notation="TeX">$>$</tex></formula>21 dB realized gain, and 3.3% <formula formulatype="inline"><tex Notation="TeX">$\vert{ S}_{11}\vert<-10~$</tex></formula>dB bandwidth and provides <formula formulatype="inline"> <tex Notation="TeX">$\pm 30^{\circ}$</tex></formula> beam-scanning range. The presented microfluidic-based beam-scanning technique operates without resorting to RF switches. Consequently, it is promising for high-power handling and low-cost realization of millimeter-wave high-gain beam-scanning antenna arrays.

[1]  Gabriel M. Rebeiz,et al.  Double-slot antennas on extended hemispherical dielectric lenses , 1992 .

[2]  Gabriel M. Rebeiz,et al.  Self and mutual admittance of slot antennas on a dielectric half-space , 1993 .

[3]  J. R. Mosig,et al.  Integrated modified rectangular loop slot antenna on substrate lenses for millimeter- and submillimeter-wave frequencies mixer applications , 1998 .

[4]  T. Fujii PDMS-based microfluidic devices for biomedical applications , 2002 .

[5]  Kamal Sarabandi,et al.  An affordable millimeter-wave beam-steerable antenna using interleaved planar subarrays , 2003 .

[6]  A. Babakhani,et al.  mm-wave phased arrays in silicon with integrated antennas , 2007, 2007 IEEE Antennas and Propagation Society International Symposium.

[7]  Angeliki Tserepi,et al.  A low temperature surface modification assisted method for bonding plastic substrates , 2008 .

[8]  Gabriel M. Rebeiz,et al.  Single and Four-Element $Ka$-Band Transmit/Receive Phased-Array Silicon RFICs With 5-bit Amplitude and Phase Control , 2009, IEEE Transactions on Microwave Theory and Techniques.

[9]  Gabriel M. Rebeiz,et al.  A Millimeter-Wave (40–45 GHz) 16-Element Phased-Array Transmitter in 0.18-$\mu$ m SiGe BiCMOS Technology , 2009, IEEE Journal of Solid-State Circuits.

[10]  G C Trichopoulos,et al.  A Novel Approach for Improving Off-Axis Pixel Performance of Terahertz Focal Plane Arrays , 2010, IEEE Transactions on Microwave Theory and Techniques.

[11]  A. Mahanfar,et al.  A Reconfigurable Patch Antenna Using Liquid Metal Embedded in a Silicone Substrate , 2011, IEEE Transactions on Antennas and Propagation.

[12]  Laurent Le Coq,et al.  Focal Array Fed Dielectric Lenses: An Attractive Solution for Beam Reconfiguration at Millimeter Waves , 2011, IEEE Transactions on Antennas and Propagation.

[13]  M. Dickey,et al.  A frequency shifting liquid metal antenna with pressure responsiveness , 2011 .

[14]  Utkan Demirci,et al.  Sheathless Size-Based Acoustic Particle Separation , 2012, Sensors.

[15]  L. Jofre,et al.  Circular Beam-Steering Reconfigurable Antenna With Liquid Metal Parasitics , 2012, IEEE Transactions on Antennas and Propagation.

[16]  G. Lazzi,et al.  Flexible Liquid Metal Alloy (EGaIn) Microstrip Patch Antenna , 2012, IEEE Transactions on Antennas and Propagation.

[17]  N. Behdad,et al.  Fluidically Tunable Frequency Selective/Phase Shifting Surfaces for High-Power Microwave Applications , 2012, IEEE Transactions on Antennas and Propagation.

[18]  G. Mumcu,et al.  Frequency-Agile Bandpass Filters Using Liquid Metal Tunable Broadside Coupled Split Ring Resonators , 2013, IEEE Microwave and Wireless Components Letters.

[19]  Yasin Damgaci,et al.  A frequency reconfigurable antenna based on digital microfluidics. , 2013, Lab on a chip.