Intervalley scattering in GaAs/AlGaAs quantum wells and quantum cascade lasers

The results of simulations of Γ-X scattering in GaAs/AlGaAs quantum wells are presented, discussing the importance of the mole fraction, doping density, and lattice and electron temperatures in determining the scattering rates. A systematic study of Γ-X scattering in GaAs/AlxGa1-xAs heterostructures, using a single quantum well to determine the importance of well width, molar concentration x, lattice temperature, and doping density, has been performed. After this we consider a double quantum well to determine the role of intervalley scattering in the transport through single-layer heterostructures, i.e. Γ-X-Γ scattering compared with Γ-Γ scattering. Finally, we estimate the relative importance of intervalley scattering in a GaAs-based quantum-cascade laser device and compare it with other relevant scattering mechanisms important to describe carrier dynamics in the structure. Our simulations suggest that Γ-X scattering can be significant at room temperature but falls off rapidly at lower temperatures.

[1]  Carlo Sirtori,et al.  300 K operation of a GaAs-based quantum-cascade laser at λ≈9 μm , 2001 .

[2]  S. Adachi GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications , 1985 .

[3]  Joel N. Schulman,et al.  Wave Mechanics Applied to Semiconductor Heterostructures , 1991 .

[4]  Raichev Oe,et al.  Phonon-assisted Gamma -X transfer in (001)-grown GaAs/AlAs superlattices. , 1994 .

[5]  P. Harrison Quantum wells, wires, and dots : theoretical and computational physics , 2016 .

[6]  F. Capasso,et al.  Quantum Cascade Lasers , 2002 .

[7]  Gaetano Scamarcio,et al.  Wide wavelength tuning of GaAs/AlxGa1-xAs bound-to-continuum quantum cascade lasers by aluminum content control , 2008 .

[8]  H. Liu,et al.  Resonant tunneling through single layer heterostructures , 1987 .

[9]  Luke R. Wilson,et al.  InGaAs∕AlAsSb∕InP quantum cascade lasers operating at wavelengths close to 3μm , 2007 .

[10]  Walther Schwarzacher,et al.  Electrodeposited p-type magnetic metal-base transistor , 2006 .

[11]  Luke R. Wilson,et al.  Intervalley scattering in GaAs–AlAs quantum cascade lasers , 2002 .

[12]  Mykhaylo P. Semtsiv,et al.  Short-wavelength (λ≈3.05μm) InP-based strain-compensated quantum-cascade laser , 2006 .

[13]  Xavier Marcadet,et al.  Spectroscopy of GaAs∕AlGaAs quantum-cascade lasers using hydrostatic pressure , 2006 .

[14]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[15]  Erich Gornik,et al.  Hydrostatic pressure studies of thin-barrier resonant tunnelling diodes , 1993 .

[16]  Dan Botez,et al.  X-valley leakage in GaAs∕AlGaAs quantum cascade lasers , 2006 .

[17]  Roland Teissier,et al.  High temperature operation of λ≈3.3μm quantum cascade lasers , 2007 .

[18]  Werner Schrenk,et al.  High-temperature performance of GaAs-based bound-to-continuum quantum-cascade lasers , 2003 .

[19]  Paul Harrison,et al.  Influence of leakage current on temperature performance of GaAs/AlGaAs quantum cascade lasers , 2002 .

[20]  Roland Teissier,et al.  InAs∕AlSb quantum cascade lasers emitting below 3μm , 2007 .

[21]  Dan Botez,et al.  X-valley leakage in GaAs-based midinfrared quantum cascade lasers: A Monte Carlo study , 2007 .

[22]  A C Marsh,et al.  Indirect band-gap tunnelling through a (100) GaAs/AlAs/GaAs heterostructure , 1986 .

[23]  Skolnick,et al.  Experimental determination of Gamma -X intervalley transfer mechanisms in GaAs/AlAs heterostructures. , 1996, Physical review. B, Condensed matter.

[24]  Paul Harrison,et al.  Aspects of the internal physics of InGaAs∕InAlAs quantum cascade lasers , 2006 .

[25]  Wang,et al.  Observation by resonant tunneling of high-energy states in GaAs-Ga1-xAlxAs quantum wells. , 1986, Physical review. B, Condensed matter.

[26]  E. Mendez,et al.  Resonant tunneling via X‐point states in AlAs‐GaAs‐AlAs heterostructures , 1987 .