An efficient implicit spectral element method for time-dependent nonlinear diffusion equations by evaluating integrals at one quadrature point

We present an implicit spectral element method to approximate the solution of time-dependent nonlinear diffusion equations in complex geometries. We propose a nodal expansion to approximate derivatives of an unknown function, so integrals involving nonlinearities are evaluated at one quadrature point and discrete form of nonlinear diffusion equations is obtained without forming local and global stiffness matrices. Using the method-of-lines (MoL), the nonlinear partial differential equation is reduced to a nonlinear system of ordinary differential equations such that the MoL formulation is derived in terms of the differentiation matrix instead of the stiffness matrix. Since the arising system is stiff, an implicit method is employed to solve it. Also, with a simple algorithm we obtain a closed analytical form for the Jacobian matrix of the system of nonlinear algebraic equations. In addition, the differentiation matrices for triangular elements and deformed quadrilateral and hexahedral elements are obtained. For deformed elements an isoparametric mapping is used where the expansion coefficients are obtained with the aid of the Gordon-Hall mapping. Several benchmarks, including the scalar and system of these equations, are carried out. As physical applications, the cell motion model over long time, the tumour angiogenesis model on a mixed quadrangle-triangle mesh, and two and three-dimensional p -Laplace equations for various choices of the parameter p are considered.

[1]  Nasim Muhammad,et al.  Model parameter uncertainties in a dual-species biofilm competition model affect ecological output parameters much stronger than morphological ones. , 2011, Mathematical biosciences.

[2]  Peter Kuster Finite Element Methods And Their Applications , 2016 .

[3]  M. Dehghan,et al.  A spectral element method using the modal basis and its application in solving second‐order nonlinear partial differential equations , 2015 .

[4]  M. Paraschivoiu,et al.  Investigation of a two-dimensional spectral element method for Helmholtz's equation , 2003 .

[5]  J. Lewandowski Marker method for the solution of nonlinear diffusion equations , 2006 .

[6]  Francis X. Giraldo,et al.  A Spectral Element Solution of the Klein-Gordon Equation with High-Order Treatment of Time and Non-Reflecting Boundary , 2010 .

[7]  Claudio Canuto,et al.  Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (Scientific Computation) , 2007 .

[8]  Carlos Alberto Brebbia,et al.  The dual reciprocity boundary element formulation for diffusion problems , 1987 .

[9]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[10]  W. Gautschi Orthogonal Polynomials: Computation and Approximation , 2004 .

[11]  Faker Ben Belgacem,et al.  Spectral element discretization of the Maxwell equations , 1999, Math. Comput..

[12]  李幼升,et al.  Ph , 1989 .

[13]  M. Alber,et al.  Classification and stability of global inhomogeneous solutions of a macroscopic model of cell motion. , 2012, Mathematical biosciences.

[14]  Mehdi Dehghan,et al.  A Legendre spectral element method on a large spatial domain to solve the predator–prey system modeling interacting populations , 2013 .

[15]  Carl Tape,et al.  Seismic tomography of the southern California crust based on spectral‐element and adjoint methods , 2010 .

[16]  William E. Schiesser The numerical method of lines , 1991 .

[17]  W. J. Gordon,et al.  Transfinite element methods: Blending-function interpolation over arbitrary curved element domains , 1973 .

[18]  Lawrence F. Shampine,et al.  Solving ODEs with MATLAB , 2002 .

[19]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[20]  Ernest Mund Spectral element solutions for the PN neutron transport equations , 2011 .

[21]  Moshe Dubiner Spectral methods on triangles and other domains , 1991 .

[22]  Ricardo Ruiz-Baier,et al.  A fully adaptive numerical approximation for a two-dimensional epidemic model with nonlinear cross-diffusion , 2011 .

[23]  David A. Kopriva,et al.  A Spectral Element Approximation to Price European Options with One Asset and Stochastic Volatility , 2010, J. Sci. Comput..

[24]  Luca F. Pavarino,et al.  An explicit second order spectral element method for acoustic waves , 2006, Adv. Comput. Math..

[25]  Martin Berzins,et al.  A Method for the Spatial Discretization of Parabolic Equations in One Space Variable , 1990, SIAM J. Sci. Comput..

[26]  Gradimir V. Milovanović,et al.  Quadratures with multiple nodes, power orthogonality, and moment-preserving spline approximation , 2001 .

[27]  Sergey Zelik,et al.  Existence and Longtime Behavior of Solutions of a Nonlinear Reaction-Diffusion System Arising in the Modeling of Biofilms (非線形拡散系とその周辺 研究集会報告集) , 2002 .

[28]  Jan S. Hesthaven,et al.  Spectral Methods for Time-Dependent Problems: Contents , 2007 .

[29]  C. Schmeiser,et al.  A one-dimensional model of cell diffusion and aggregation, incorporating volume filling and cell-to-cell adhesion , 2009, Journal of mathematical biology.

[30]  Karol Mikula,et al.  Semi-implicit finite volume scheme for solving nonlinear diffusion equations in image processing , 2001, Numerische Mathematik.

[31]  Mark Alber,et al.  Macroscopic dynamics of biological cells interacting via chemotaxis and direct contact. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  P. Fischer,et al.  High-Order Methods for Incompressible Fluid Flow , 2002 .

[33]  Dan S. Henningson,et al.  Stabilization of the Spectral-Element Method in Turbulent Flow Simulations , 2011 .

[34]  S. Hood On direct, implicit reductions of a nonlinear diffusion equation with an arbitrary function - generalizations of Clarkson's and Kruskal's method , 2000 .

[35]  William E. Schiesser,et al.  A Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab , 2009 .

[36]  Bruce P. Ayati,et al.  A unified term for directed and undirected motility in collective cell invasion , 2012, Appl. Math. Lett..

[37]  Mehdi Dehghan,et al.  A spectral element method for solving the Pennes bioheat transfer equation by using triangular and quadrilateral elements , 2012 .

[38]  Robert C. Kirby,et al.  Algorithm 839: FIAT, a new paradigm for computing finite element basis functions , 2004, TOMS.

[39]  Lawrence F. Shampine,et al.  The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..

[40]  Jan S. Hesthaven,et al.  From Electrostatics to Almost Optimal Nodal Sets for Polynomial Interpolation in a Simplex , 1998 .

[41]  Laurent Demaret,et al.  A Mixed-Culture Model of a Probiotic Biofilm Control System , 2010, Comput. Math. Methods Medicine.

[42]  J. M. Zhao,et al.  Spectral element method for vector radiative transfer equation , 2010, 1105.1210.

[43]  Mark A. J. Chaplain,et al.  An explicit subparametric spectral element method of lines applied to a tumour angiogenesis system o , 2004 .

[44]  Qu Changzheng,et al.  Exact solutions to nonlinear diffusion equations obtained by a generalized conditional symmetry method , 1999 .

[45]  P. Maini,et al.  A mathematical model for the capillary endothelial cell-extracellular matrix interactions in wound-healing angiogenesis. , 1997, IMA journal of mathematics applied in medicine and biology.

[46]  George Em Karniadakis,et al.  De-aliasing on non-uniform grids: algorithms and applications , 2003 .

[47]  Andrés Arrarás,et al.  Locally linearized fractional step methods for nonlinear parabolic problems , 2010, J. Comput. Appl. Math..

[48]  Satish C. Reddy,et al.  A MATLAB differentiation matrix suite , 2000, TOMS.

[49]  Yvon Maday,et al.  Optimal error analysis of spectral methods with emphasis on non-constant coefficients and deformed geometries , 1990 .

[50]  Mehdi Dehghan,et al.  Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices , 2006, Math. Comput. Simul..

[51]  C. Pozrikidis,et al.  Introduction to finite and spectral element methods using MATLAB , 2014 .

[52]  Eleuterio F. Toro,et al.  ADER finite volume schemes for nonlinear reaction--diffusion equations , 2009 .

[53]  A. Wazwaz Partial Differential Equations and Solitary Waves Theory , 2009 .

[54]  S. P. Oliveira,et al.  Dispersion analysis of spectral element methods for elastic wave propagation , 2008 .

[55]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[56]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[57]  Roland Bouffanais,et al.  Solution of moving-boundary problems by the spectral element method , 2007, ArXiv.

[58]  N. M. Ivanova,et al.  On the group classification of variable-coefficient nonlinear diffusion-convection equations , 2006 .

[59]  M. Burger,et al.  A mixed finite element method for nonlinear diffusion equations , 2010 .

[60]  B. Grammaticos,et al.  Modelling intercellular communication and its effects on tumour invasion , 2010, Physical biology.

[61]  K. Painter,et al.  A User's Guide to Pde Models for Chemotaxis , 2022 .

[62]  Min Hyoung Cho,et al.  Geometric nonlinear diffusion filter and its application to X-ray imaging , 2011, Biomedical engineering online.

[63]  Richard Baltensperger,et al.  Spectral Differencing with a Twist , 2002, SIAM J. Sci. Comput..

[64]  Anthony T. Patera,et al.  A Legendre spectral element method for the Stefan problem , 1987 .

[65]  P. Maini,et al.  Travelling waves in a nonlinear degenerate diffusion model for bacterial pattern formation , 2001 .

[66]  G. Lombardi Design of quadrature rules for Müntz and Müntz‐logarithmic polynomials using monomial transformation , 2009 .

[67]  Bruce T. Murray,et al.  Adaptive finite element methodology for tumour angiogenesis modelling , 2007 .

[68]  Mark A. Taylor,et al.  An Algorithm for Computing Fekete Points in the Triangle , 2000, SIAM J. Numer. Anal..

[69]  Francis X. Giraldo,et al.  A nodal triangle-based spectral element method for the shallow water equations on the sphere , 2005 .

[70]  W. J. Gordon,et al.  Construction of curvilinear co-ordinate systems and applications to mesh generation , 1973 .

[71]  H.M. Tufo,et al.  Terascale Spectral Element Algorithms and Implementations , 1999, ACM/IEEE SC 1999 Conference (SC'99).