Plasmid‐Templated Shape Control of Condensed DNA–Block Copolymer Nanoparticles

DNA-containing micellar nanoparticles with distinctly different and highly uniform morphologies are prepared via condensation of plasmid DNA with a block copolymer of polyethylene glycol and a polycation in solvents of different polarity. Molecular dynamics simulations explain the underlying mechanism.

[1]  K. Kataoka,et al.  Progress and prospects of polyplex nanomicelles for plasmid DNA delivery. , 2011, Current gene therapy.

[2]  K. Leong,et al.  Dual‐Sensitive Micellar Nanoparticles Regulate DNA Unpacking and Enhance Gene‐Delivery Efficiency , 2010, Advanced materials.

[3]  M. Torbenson,et al.  String-Like Micellar Nanoparticles Formed by Complexation of PEG-b-PPA and Plasmid DNA and Their Transfection Efficiency , 2011, Pharmaceutical Research.

[4]  Casey Weaver,et al.  Noninvasive bioluminescence imaging in small animals. , 2008, ILAR journal.

[5]  Daniel W. Pack,et al.  Design and development of polymers for gene delivery , 2005, Nature Reviews Drug Discovery.

[6]  Hamidreza Ghandehari,et al.  Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. , 2011, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[7]  C. Chin,et al.  The use of tributylphosphine and 4-(aminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole in the study of protein sulfhydryls and disulfides. , 1993, Analytical biochemistry.

[8]  A. Göpferich,et al.  Delivery of Nucleic Acids via Disulfide‐Based Carrier Systems , 2009, Advanced materials.

[9]  M. Daoud,et al.  Star shaped polymers : a model for the conformation and its concentration dependence , 1982 .

[10]  Mark E. Davis,et al.  Non-viral gene delivery systems. , 2002, Current opinion in biotechnology.

[11]  Ke-Xin Zhang,et al.  Shape effects of nanoparticles conjugated with cell-penetrating peptides (HIV Tat PTD) on CHO cell uptake. , 2008, Bioconjugate chemistry.

[12]  G. Wong,et al.  Control of electrostatic interactions between F-actin and genetically modified lysozyme in aqueous media , 2007, Proceedings of the National Academy of Sciences.

[13]  M. Hadjiargyrou,et al.  Characterizing DNA Condensation and Conformational Changes in Organic Solvents , 2010, PloS one.

[14]  Hongwei Shen,et al.  MORPHOLOGICAL PHASE DIAGRAM FOR A TERNARY SYSTEM OF BLOCK COPOLYMER PS310-B-PAA52/DIOXANE/H2O , 1999 .

[15]  R. J. Hunter Zeta potential in colloid science : principles and applications , 1981 .

[16]  Mauro Ferrari,et al.  Intravascular Delivery of Particulate Systems: Does Geometry Really Matter? , 2008, Pharmaceutical Research.

[17]  J. Rudnick,et al.  The Shapes of Random Walks , 1987, Science.

[18]  Arezou A Ghazani,et al.  Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. , 2006, Nano letters.

[19]  Ou Chen,et al.  Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. , 2011, Angewandte Chemie.

[20]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[21]  D. Dalrymple,et al.  A one-step procedure for the selective trifluoroacetylation of primary amino groups of polyamines , 1995 .

[22]  Erik Luijten,et al.  Shape Variation of Linear Polymers upon Phase Separation in a Ternary Solution , 2003 .

[23]  F. E. Bailey,et al.  Poly(ethylene oxide) , 1976 .

[24]  S. Puranik,et al.  Dielectric relaxation studies of aqueous N,N-dimethylformamide using a picosecond time domain technique , 1993 .

[25]  Stephanie E. A. Gratton,et al.  The effect of particle design on cellular internalization pathways , 2008, Proceedings of the National Academy of Sciences.

[26]  H. Mao,et al.  Charge density and molecular weight of polyphosphoramidate gene carrier are key parameters influencing its DNA compaction ability and transfection efficiency. , 2010, Biomacromolecules.

[27]  Sheng Zhong,et al.  Block Copolymer Assembly via Kinetic Control , 2007, Science.

[28]  Kurt Kremer,et al.  The nature of flexible linear polyelectrolytes in salt free solution: A molecular dynamics study , 1995 .

[29]  H W Diehl,et al.  Universal shape ratios for open and closed random walks: exact results for all d , 1989 .

[30]  M. Torbenson,et al.  PEG-b-PPA/DNA micelles improve transgene expression in rat liver through intrabiliary infusion. , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[31]  D. Discher,et al.  Shape effects of filaments versus spherical particles in flow and drug delivery. , 2007, Nature nanotechnology.

[32]  M. Torbenson,et al.  Chitosan-DNA nanoparticles delivered by intrabiliary infusion enhance liver-targeted gene delivery , 2006, International journal of nanomedicine.

[33]  K. Šolc Shape of a Random‐Flight Chain , 1971 .

[34]  C. Tanford Macromolecules , 1994, Nature.

[35]  Erik Luijten,et al.  Polyelectrolyte condensation induced by linear cations. , 2007, Physical review letters.

[36]  H. Herweijer,et al.  Gene therapy progress and prospects: Hydrodynamic gene delivery , 2007, Gene Therapy.

[37]  K. Leong,et al.  Design of Polyphosphoester-DNA Nanoparticles for Non-Viral Gene Delivery. , 2005, Advances in genetics.

[38]  Qi Liao,et al.  Molecular dynamics simulations of polyelectrolyte solutions: Nonuniform stretching of chains and scaling behavior , 2003 .

[39]  K. Kataoka,et al.  Polyion complex micelles as vectors in gene therapy – pharmacokinetics and in vivo gene transfer , 2002, Gene Therapy.

[40]  Kevin G Rice,et al.  Quantitative bioluminescence imaging of transgene expression in vivo. , 2006, Analytical biochemistry.

[41]  Salt-induced collapse and reexpansion of highly charged flexible polyelectrolytes. , 2004, Physical review letters.

[42]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .