A diffuse interface approach to Hele-Shaw flow

A diffuse interface model for the one-phase Hele–Shaw problem is derived from a gradient flow characterization due to Otto (1998 Arch. Rat. Mech. Anal. 141 63). The resulting dynamical model yields a generalized form of Darcy's law, and reduces to a degenerate version of the well-known Cahn–Hilliard equation. Formal asymptotics illustrate the connection to the classical Hele–Shaw free boundary problem. Some example computations are carried out to demonstrate the flexibility of the modelling framework.

[1]  Andrea L. Bertozzi,et al.  Stable and unstable singularities in the unforced Hele‐Shaw cell , 1996 .

[2]  G. Caginalp An analysis of a phase field model of a free boundary , 1986 .

[3]  S. Bankoff,et al.  Long-scale evolution of thin liquid films , 1997 .

[4]  J. Duchon,et al.  Évolution d’une interface par capillarité et diffusion de volume I. Existence locale en temps , 1984 .

[5]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[6]  K. Glasner Nonlinear preconditioning for diffuse interfaces , 2001 .

[7]  Geoffrey B. McFadden,et al.  Phase-field model for solidification of a eutectic alloy , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[8]  Joachim Escher,et al.  Classical solutions for Hele-Shaw models with surface tension , 1997, Advances in Differential Equations.

[9]  Jim Douglas,et al.  ALTERNATING-DIRECTION GALERKIN METHODS ON RECTANGLES , 1971 .

[10]  Felix Otto,et al.  Dynamics of Labyrinthine Pattern Formation in Magnetic Fluids: A Mean‐Field Theory , 1998 .

[11]  A. Bertozzi,et al.  Global models for moving contact lines. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  A. Friedman,et al.  Higher order nonlinear degenerate parabolic equations , 1990 .

[13]  Jackson,et al.  Hydrodynamics of fingering instabilities in dipolar fluids. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  R. Folch,et al.  Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast. I. Theoretical approach. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  R. Chella,et al.  Mixing of a two-phase fluid by cavity flow. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  Harald Garcke,et al.  Finite Element Approximation of the Cahn-Hilliard Equation with Degenerate Mobility , 1999, SIAM J. Numer. Anal..

[17]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[18]  Felix Otto,et al.  Lubrication approximation with prescribed nonzero contact anggle , 1998 .

[19]  J. Lowengrub,et al.  Quasi–incompressible Cahn–Hilliard fluids and topological transitions , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[20]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[21]  Robert L. Pego,et al.  Front migration in the nonlinear Cahn-Hilliard equation , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[22]  Gretar Tryggvason,et al.  Numerical experiments on Hele Shaw flow with a sharp interface , 1983, Journal of Fluid Mechanics.

[23]  Raymond E. Goldstein,et al.  Instabilities and singularities in Hele–Shaw flow , 1998 .

[24]  Wheeler,et al.  Phase-field model for isothermal phase transitions in binary alloys. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[25]  J. Taylor,et al.  Overview No. 98 I—Geometric models of crystal growth , 1992 .

[26]  Mary C. Pugh,et al.  Global solutions for small data to the Hele-Shaw problem , 1993 .

[27]  J. Waals The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density , 1979 .

[28]  L. Antanovskii A phase field model of capillarity , 1995 .

[29]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[30]  Robert Almgren,et al.  Singularity formation in Hele–Shaw bubbles , 1996 .

[31]  Paul C. Fife,et al.  Dynamics of Layered Interfaces Arising from Phase Boundaries , 1988 .

[32]  David Jacqmin,et al.  Contact-line dynamics of a diffuse fluid interface , 2000, Journal of Fluid Mechanics.

[33]  Kadanoff,et al.  Finite-time singularity formation in Hele-Shaw systems. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[34]  D. M. Anderson,et al.  DIFFUSE-INTERFACE METHODS IN FLUID MECHANICS , 1997 .

[35]  Charles M. Elliott,et al.  On the Cahn-Hilliard equation , 1986 .

[36]  Jonathan Goodman,et al.  Modeling pinchoff and reconnection in a Hele-Shaw cell. II. Analysis and simulation in the nonlinear regime , 2002 .

[37]  Constantin,et al.  Droplet breakup in a model of the Hele-Shaw cell. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[38]  Charles M. Elliott,et al.  The Cahn–Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature , 1996, European Journal of Applied Mathematics.

[39]  Peter Smereka,et al.  Semi-Implicit Level Set Methods for Curvature and Surface Diffusion Motion , 2003, J. Sci. Comput..

[40]  Donald M. Anderson,et al.  A diffuse-interface description of internal waves in a near-critical fluid , 1997 .

[41]  D. Jacqmin Regular Article: Calculation of Two-Phase Navier–Stokes Flows Using Phase-Field Modeling , 1999 .

[42]  T. Hou,et al.  Removing the stiffness from interfacial flows with surface tension , 1994 .

[43]  M. Gurtin,et al.  TWO-PHASE BINARY FLUIDS AND IMMISCIBLE FLUIDS DESCRIBED BY AN ORDER PARAMETER , 1995, patt-sol/9506001.

[44]  J. Goodman,et al.  Modeling pinchoff and reconnection in a Hele-Shaw cell. I. The models and their calibration , 2002 .

[45]  Peter W. Bates,et al.  Convergence of the Cahn-Hilliard equation to the Hele-Shaw model , 1994 .

[46]  G. Prokert Existence results for Hele–Shaw flow driven by surface tension , 1998, European Journal of Applied Mathematics.

[47]  Felix Otto,et al.  Small surface energy, coarse-graining, and selection of microstructure , 1997 .

[48]  W. Gangbo,et al.  The geometry of optimal transportation , 1996 .

[49]  Günther Grün,et al.  On the convergence of entropy consistent schemes for lubrication type equations in multiple space dimensions , 2003, Math. Comput..

[50]  O. K. Andersen,et al.  Bonding at metal-ceramic interfaces; AB Initio density-functional calculations for Ti and Ag on MgO , 1992 .

[51]  R. Folch,et al.  Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast. II. Numerical study. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.