A comparative study of new non-linear uncertainty propagation methods for space surveillance

We propose a unified testing framework for assessing uncertainty realism during non-linear uncertainty propagation under the perturbed two-body problem of celestial mechanics, with an accompanying suite of metrics and benchmark test cases on which to validate different methods. We subsequently apply the testing framework to different combinations of uncertainty propagation techniques and coordinate systems for representing the uncertainty. In particular, we recommend the use of a newly-derived system of orbital element coordinates that mitigate the non-linearities in uncertainty propagation and the recently-developed Gauss von Mises filter which, when used in tandem, provide uncertainty realism over much longer periods of time compared to Gaussian representations of uncertainty in Cartesian spaces, at roughly the same computational cost.

[1]  Aubrey B. Poore,et al.  Orbital State Uncertainty Realism , 2012 .

[2]  Aubrey B. Poore,et al.  Adaptive Gaussian Sum Filters for Space Surveillance , 2011, IEEE Transactions on Automatic Control.

[3]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[4]  Gene H. Golub,et al.  Matrix computations , 1983 .

[5]  Rudolph van der Merwe,et al.  The square-root unscented Kalman filter for state and parameter-estimation , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[6]  Aubrey B. Poore,et al.  Implicit-Runge–Kutta-based methods for fast, precise, and scalable uncertainty propagation , 2015 .

[7]  Aubrey B. Poore,et al.  Beyond covariance realism: a new metric for uncertainty realism , 2014, Defense + Security Symposium.

[8]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[9]  Aubrey B. Poore,et al.  Orbit and uncertainty propagation: a comparison of Gauss–Legendre-, Dormand–Prince-, and Chebyshev–Picard-based approaches , 2014 .

[10]  Chris Sabol,et al.  Linearized Orbit Covariance Generation and Propagation Analysis via Simple Monte Carlo Simulations (Preprint) , 2010 .

[11]  Aubrey B. Poore,et al.  Gauss von Mises Distribution for Improved Uncertainty Realism in Space Situational Awareness , 2014, SIAM/ASA J. Uncertain. Quantification.

[12]  T. Singh,et al.  Uncertainty Propagation for Nonlinear Dynamic Systems Using Gaussian Mixture Models , 2008 .

[13]  Aubrey B. Poore,et al.  Gaussian Sum Filters for Space Surveillance: Theory and Simulations , 2011 .

[14]  Oliver Montenbruck,et al.  Satellite Orbits: Models, Methods and Applications , 2000 .

[15]  Dirk Brouwer,et al.  SOLUTION OF THE PROBLEM OF ARTIFICIAL SATELLITE THEORY WITHOUT DRAG , 1959 .

[16]  S. R. Jammalamadaka,et al.  Directional Statistics, I , 2011 .

[17]  Aubrey B. Poore,et al.  Nonlinear Uncertainty Propagation in Orbital Elements and Transformation to Cartesian Space Without Loss of Realism , 2014 .

[18]  Oliver E. Drummond,et al.  Metrics for evaluating track covariance consistency , 2007, SPIE Optical Engineering + Applications.

[19]  S. Särkkä,et al.  On Unscented Kalman Filtering for State Estimation of Continuous-Time Nonlinear Systems , 2007, IEEE Transactions on Automatic Control.

[20]  R. H. Lyddane Small eccentricities or inclinations in the Brouwer theory of the artificial satellite , 1963 .

[21]  D. Vallado Fundamentals of Astrodynamics and Applications , 1997 .

[22]  Kazufumi Ito,et al.  Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..

[23]  R. Broucke,et al.  On the equinoctial orbit elements , 1972 .