THE FORMATION MECHANISM OF GAS GIANTS ON WIDE ORBITS

The recent discoveries of massive planets on ultra-wide orbits of HR 8799 and Fomalhaut present a new challenge for planet formation theorists. Our goal is to figure out which of three giant planet formation mechanisms— core accretion (with or without migration), scattering from the inner disk, or gravitational instability—could be responsible for Fomalhaut b, HR 8799 b, c and d, and similar planets discovered in the future. This paper presents the results of numerical experiments comparing the long-period planet formation efficiency of each possible mechanism in model A star, G star, and M star disks. First, a simple core accretion simulation shows that planet cores forming beyond 35 AU cannot reach critical mass, even under the most favorable conditions one can construct. Second, a set of N-body simulations demonstrates that planet–planet scattering does not create stable, wide-orbit systems such as HR 8799. Finally, a linear stability analysis verifies previous work showing that global spiral instabilities naturally arise in high-mass disks. We conclude that massive gas giants on stable orbits with semimajor axes a ≳35 AU form by gravitational instability in the disk. We recommend that observers examine the planet detection rate as a function of stellar age, controlling for the planets’ dimming with time. Any age trend would indicate that planets on wide orbits are transient relics of scattering from the inner disk. If planet detection rate is found to be independent of stellar age, it would confirm our prediction that gravitational instability is the dominant mode of producing detectable planets on wide orbits.We also predict that the occurrence ratio of long-period to short-period gas giants should be highest for M dwarfs due to the inefficiency of core accretion and the expected small fragment mass (~10 M_(Jup)) in their disks.

[1]  J. Lissauer,et al.  Accretion rates of protoplanets: II. Gaussian distributions of planetesimal velocities , 1991 .

[2]  K. Menou,et al.  LONG-PERIOD EXOPLANETS FROM DYNAMICAL RELAXATION , 2008, 0811.1981.

[3]  J. Lissauer,et al.  N-Body simulations of growth from 1 km planetesimals at 0.4 AU , 2009, 0903.4737.

[4]  D. Lin,et al.  Toward a Deterministic Model of Planetary Formation. I. A Desert in the Mass and Semimajor Axis Distributions of Extrasolar Planets , 2004 .

[5]  Sean N. Raymond,et al.  PLANET–PLANET SCATTERING IN PLANETESIMAL DISKS , 2009, 0905.3741.

[6]  B. Zuckerman,et al.  The minimum Jeans mass, brown dwarf companion IMF, and predictions for detection of Y-type dwarfs , 2008, 0811.0429.

[7]  Eric B. Ford,et al.  Dynamical Outcomes of Planet-Planet Scattering , 2007, astro-ph/0703166.

[8]  P. Goldreich,et al.  Spectral Energy Distributions of T Tauri Stars with Passive Circumstellar Disks , 1997, astro-ph/9706042.

[9]  University of Toronto,et al.  THE RUNTS OF THE LITTER: WHY PLANETS FORMED THROUGH GRAVITATIONAL INSTABILITY CAN ONLY BE FAILED BINARY STARS , 2009, 0909.2644.

[10]  M. Krumholz,et al.  Global Models for the Evolution of Embedded, Accreting Protostellar Disks , 2007, 0709.4252.

[11]  `Tail-end' Bondi-Hoyle accretion in young star clusters: Implications for disks, planets, and stars , 2008, 0804.0438.

[12]  Anthony Peter Whitworth,et al.  The formation and fragmentation of the ring appearing in the collapse of a rotating cloud , 2003 .

[13]  The Thermal Regulation of Gravitational Instabilities in Protoplanetary Disks , 2003 .

[14]  The minimum mass for star formation, and the origin of binary brown dwarfs , 2006, astro-ph/0610039.

[15]  G. Laughlin,et al.  The Effect of Gravitational Instabilities on Protostellar Disks , 1996 .

[16]  Jpl,et al.  Saturn Forms by Core Accretion in 3.4 Myr , 2008, 0810.0288.

[17]  I. Bonnell,et al.  The onset of collapse in turbulently supported molecular clouds , 2005 .

[18]  Italo Mazzitelli,et al.  New pre-main-sequence tracks for M less than or equal to 2.5 solar mass as tests of opacities and convecti on model , 1994 .

[19]  Numerical Viscosity and the Survival of Gas Giant Protoplanets in Disk Simulations , 2007 .

[20]  R. Rafikov,et al.  Can Giant Planets Form by Direct Gravitational Instability , 2005 .

[21]  R. Durisen,et al.  3D Radiative Hydrodynamics for Disk Stability Simulations: A Proposed Testing Standard and New Results , 2007, 0704.2532.

[22]  R. Paul Butler,et al.  A New Planet around an M Dwarf: Revealing a Correlation between Exoplanets and Stellar Mass , 2007, 0707.2409.

[23]  Ravit Helled,et al.  Core formation in giant gaseous protoplanets , 2008, 0808.2787.

[24]  A. Boss On the Formation of Gas Giant Planets on Wide Orbits , 2006, astro-ph/0601278.

[25]  David Lafreniere,et al.  HST/NICMOS DETECTION OF HR 8799 b IN 1998 , 2009, 0902.3247.

[26]  Astronomy,et al.  Introducing a hybrid radiative transfer method for smoothed particle hydrodynamics , 2008, 0812.0304.

[27]  J. P. Laboratory,et al.  Ice lines, planetesimal composition and solid surface density in the solar nebula , 2008, 0806.3788.

[28]  Scott J. Kenyon,et al.  Planet Formation around Stars of Various Masses: The Snow Line and the Frequency of Giant Planets , 2007, 0710.1065.

[29]  K. Y. L. Su,et al.  ACCEPTED FOR PUBLICATION IN APJ. Preprint typeset using LATEX style emulateapj v. 2/19/04 THE DEBRIS DISK AROUND HR 8799 , 2022 .

[30]  Jonathan P. Williams,et al.  A Submillimeter View of Circumstellar Dust Disks in ρ Ophiuchi , 2007, 0708.4185.

[31]  Richard H. Durisen,et al.  The Thermal Regulation of Gravitational Instabilities in Protoplanetary Disks. II. Extended Simulations with Varied Cooling Rates , 2005 .

[32]  Joachim Stadel,et al.  The Evolution of Gravitationally Unstable Protoplanetary Disks: Fragmentation and Possible Giant Planet Formation , 2003, astro-ph/0310771.

[33]  A. Crida,et al.  The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk , 2007, 0704.1210.

[34]  A. Boss,et al.  Possible Rapid Gas Giant Planet Formation in the Solar Nebula and Other Protoplanetary Disks , 2000, The Astrophysical journal.

[35]  K. Tsiganis,et al.  Origin of the orbital architecture of the giant planets of the Solar System , 2005, Nature.

[36]  F. Tackmann,et al.  Nonperturbative m_X cut effects in B-->X_sl^+Γ observables , 2008, 0812.0001.

[37]  Spectral Energy Distributions of Passive T Tauri and Herbig Ae Disks: Grain Mineralogy, Parameter Dependences, and Comparison with Infrared Space Observatory LWS Observations , 2000, astro-ph/0009428.

[38]  S. Dodson-Robinson,et al.  DISCOVERING THE GROWTH HISTORIES OF EXOPLANETS: THE SATURN ANALOG HD 149026b , 2009, 0901.0582.

[39]  D. Lynden-Bell,et al.  The Evolution of viscous discs and the origin of the nebular variables. , 1974 .

[40]  S. Michael,et al.  The Effects of Metallicity and Grain Size on Gravitational Instabilities in Protoplanetary Disks , 2005, astro-ph/0508354.

[41]  Berkeley,et al.  ON THE ROLE OF DISKS IN THE FORMATION OF STELLAR SYSTEMS: A NUMERICAL PARAMETER STUDY OF RAPID ACCRETION , 2009, 0907.3476.

[42]  M. Mayor,et al.  Planets around evolved intermediate-mass stars - I. Two substellar companions in the open clusters NGC 2423 and NGC 4349 , 2007, 0706.2174.

[43]  C. G. Tinney,et al.  Catalog of nearby exoplanets , 2006 .

[44]  J. Chambers A hybrid symplectic integrator that permits close encounters between massive bodies , 1999 .

[45]  Caltech,et al.  THE LAST GASP OF GAS GIANT PLANET FORMATION: A SPITZER STUDY OF THE 5 Myr OLD CLUSTER NGC 2362 , 2009, 0903.2666.

[46]  Accelerated planetesimal growth in self-gravitating protoplanetary discs , 2004, astro-ph/0408390.

[47]  C. Clarke,et al.  Pseudo-viscous modelling of self-gravitating discs and the formation of low mass ratio binaries , 2009, 0904.3549.

[48]  Gregory Laughlin,et al.  The Dynamics of Heavy Gaseous Disks , 1998 .

[49]  Gregory Laughlin,et al.  The Core Accretion Model Predicts Few Jovian-Mass Planets Orbiting Red Dwarfs , 2004, astro-ph/0407309.

[50]  R. Rafikov,et al.  PROPERTIES OF GRAVITOTURBULENT ACCRETION DISKS , 2009, 0901.4739.

[51]  Cambridge,et al.  Testing the locality of transport in self-gravitating accretion discs — II. The massive disc case , 2005 .

[52]  Olivier Absil,et al.  The spin-orbit alignment of the Fomalhaut planetary system probed by optical long baseline interferometry , 2009, 0904.1688.

[53]  A. Boss Evolution of the Solar Nebula. VII. Formation and Survival of Protoplanets Formed by Disk Instability , 2005 .

[54]  T. Lohne,et al.  A possible architecture of the planetary system HR 8799 , 2009, 0905.4688.

[55]  Mark S. Marley,et al.  Synthetic Spectra and Colors of Young Giant Planet Atmospheres: Effects of Initial Conditions and Atmospheric Metallicity , 2008, 0805.1066.

[56]  A. Johansen,et al.  Global magnetohydrodynamical models of turbulence in protoplanetary disks. I. A cylindrical potentia , 2007, 0705.4090.

[57]  Aaron C. Boley,et al.  Clumps in the outer disk by disk instability: Why they are initially gas giants and the legacy of disruption , 2009, 0909.4543.

[58]  Andrew Cumming,et al.  The Keck Planet Search: Detectability and the Minimum Mass and Orbital Period Distribution of Extrasolar Planets , 2008, 0803.3357.

[59]  R. Durisen,et al.  GIANT PLANET FORMATION BY DISK INSTABILITY: A COMPARISON SIMULATION WITH AN IMPROVED RADIATIVE SCHEME , 2009, 0907.4213.

[60]  J. Valenti,et al.  The Planet-Metallicity Correlation , 2005 .

[61]  G. Laughlin,et al.  Nonlinear Generation of One-armed Spirals in Self-gravitating Disks , 1996 .

[62]  C. Migaszewski,et al.  Is the HR 8799 extrasolar system destined for planetary scattering , 2009, 0904.4106.

[63]  Fred C. Adams,et al.  Eccentric gravitational instabilities in nearly Keplerian disks , 1989 .

[64]  Mark Clampin,et al.  A planetary system as the origin of structure in Fomalhaut's dust belt , 2005, Nature.

[65]  Harold F. Levison,et al.  Planetary migration in a planetesimal disk: why did Neptune stop at 30 AU? , 2004 .

[66]  S. Basu,et al.  THE BURST MODE OF PROTOSTELLAR ACCRETION , 2006, astro-ph/0607118.

[67]  The Thermal Regulation of Gravitational Instabilities in Protoplanetary Disks. IV. Simulations with Envelope Irradiation , 2007, 0706.4046.

[68]  Silicon and Nickel Enrichment in Planet Host Stars: Observations and Implications for the Core Accretion Theory of Planet Formation , 2006, astro-ph/0601656.

[69]  V. Safronov,et al.  Evolution of the protoplanetary cloud and formation of the earth and the planets , 1972 .

[70]  R. Durisen,et al.  Gravitational Instabilities, Chondrule Formation, and the FU Orionis Phenomenon , 2008, 0806.1740.

[71]  S. Kenyon,et al.  Variations on Debris Disks: Icy Planet Formation at 30-150 AU for 1-3 M☉ Main-Sequence Stars , 2008, 0807.1134.

[72]  Justin R. Crepp,et al.  FORMATION, SURVIVAL, AND DETECTABILITY OF PLANETS BEYOND 100 AU , 2009, 0902.2779.

[73]  Aaron C. Boley,et al.  THE TWO MODES OF GAS GIANT PLANET FORMATION , 2009, 0902.3999.

[74]  H. Levison,et al.  Remarks on Modeling the Formation of Uranus and Neptune , 2001 .

[75]  B. Macintosh,et al.  Direct Imaging of Multiple Planets Orbiting the Star HR 8799 , 2008, Science.

[76]  A. Whitworth,et al.  The properties of brown dwarfs and low-mass hydrogen-burning stars formed by disc fragmentation , 2008, 0810.1687.

[77]  Dan M. Watson,et al.  SOLAR SYSTEM ANALOGS AROUND IRAS-DISCOVERED DEBRIS DISKS , 2009, 0906.3744.

[78]  H. Mizuno,et al.  Formation of the Giant Planets , 1980 .

[79]  Orbital Evolution of Planets Embedded in a Planetesimal Disk , 1999, astro-ph/9902370.

[80]  Origins of Eccentric Extrasolar Planets: Testing the Planet-Planet Scattering Model , 2007, astro-ph/0703163.

[81]  N. Gorelick,et al.  Mean Motion Resonances from Planet-Planet Scattering , 2008, 0809.3449.

[82]  A. Boss Testing Disk Instability Models for Giant Planet Formation , 2007, 0704.1138.

[83]  Mark Clampin,et al.  Optical Images of an Exosolar Planet 25 Light-Years from Earth , 2008, Science.

[84]  S. Lizano,et al.  Numerical simulations in astrophysics , 1994 .