A Bioinformatics Approach to 3 D Shape Matching

In this paper we exploit the effectiveness of bioinformatics tools to deal with 3D shape matching. The key idea is to transform the shape into a biological sequence and take advantage of bioinformatics tools for sequence alignment to improve shape matching. In order to extract a reliable ordering of mesh vertices we employ the spectral-based sequencing method derived from the well known Fiedler Vector. Local geometric features are then collected and quantized into a finite set of discrete values in analogy with nucleotide or aminoacid sequence. Two standard biological sequence matching strategies are employed aiming at evaluating both local and global alignment methods. Preliminary experiments are performed on standard non-rigid shape datasets by showing promising results in comparison with other methods.

[1]  S. B. Needleman,et al.  A general method applicable to the search for similarities in the amino acid sequence of two proteins. , 1970, Journal of molecular biology.

[2]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[3]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.

[4]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[5]  Andrea J. van Doorn,et al.  Surface shape and curvature scales , 1992, Image Vis. Comput..

[6]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[7]  Sean R. Eddy,et al.  Profile hidden Markov models , 1998, Bioinform..

[8]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[9]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[10]  Mark A. Best,et al.  Bioinformatics: the Machine Learning Approach, 2nd edn , 2004 .

[11]  Remco C. Veltkamp,et al.  A Survey of Content Based 3D Shape Retrieval Methods , 2004, SMI.

[12]  Martin Isenburg,et al.  Streaming meshes , 2005, VIS 05. IEEE Visualization, 2005..

[13]  Robert P. W. Duin,et al.  The Dissimilarity Representation for Pattern Recognition - Foundations and Applications , 2005, Series in Machine Perception and Artificial Intelligence.

[14]  Thomas A. Funkhouser,et al.  Shape-based retrieval and analysis of 3d models , 2005, CACM.

[15]  Niklas Peinecke,et al.  Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids , 2006, Comput. Aided Des..

[16]  Cédric Notredame,et al.  Upcoming challenges for multiple sequence alignment methods in the high-throughput era , 2009, Bioinform..

[17]  Alexander M. Bronstein,et al.  Numerical Geometry of Non-Rigid Shapes , 2009, Monographs in Computer Science.

[18]  Mauro R. Ruggeri,et al.  Spectral-Driven Isometry-Invariant Matching of 3D Shapes , 2010, International Journal of Computer Vision.

[19]  Alexander M. Bronstein,et al.  The Video Genome , 2010, ArXiv.

[20]  Andrea Fusiello,et al.  The bag of words approach for retrieval and categorization of 3D objects , 2010, The Visual Computer.

[21]  Ramsay Dyer,et al.  Spectral Mesh Processing , 2010, Comput. Graph. Forum.

[22]  Heng Li,et al.  A survey of sequence alignment algorithms for next-generation sequencing , 2010, Briefings Bioinform..

[23]  Leonidas J. Guibas,et al.  Shape google: Geometric words and expressions for invariant shape retrieval , 2011, TOGS.

[24]  Umberto Castellani,et al.  Statistical 3D Shape Analysis by Local Generative Descriptors , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Ghassan Hamarneh,et al.  A Survey on Shape Correspondence , 2011, Comput. Graph. Forum.

[26]  Manuele Bicego,et al.  2D shape recognition using biological sequence alignment tools , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[27]  Adrien Bartoli,et al.  3D Shape Registration , 2012, 3D Imaging, Analysis and Applications.

[28]  Manuele Bicego,et al.  2D Shapes Classification Using BLAST , 2012, SSPR/SPR.

[29]  Paul Suetens,et al.  A comparison of methods for non-rigid 3D shape retrieval , 2013, Pattern Recognit..

[30]  A. Ben Hamza,et al.  Intrinsic spatial pyramid matching for deformable 3D shape retrieval , 2013, International Journal of Multimedia Information Retrieval.

[31]  A. Ben Hamza,et al.  Spatially aggregating spectral descriptors for nonrigid 3D shape retrieval: a comparative survey , 2013, Multimedia Systems.

[32]  Manuele Bicego,et al.  S-BLOSUM: Classification of 2D Shapes with Biological Sequence Alignment , 2014, 2014 22nd International Conference on Pattern Recognition.