The effect of ultrasound on the growth and viability of microalgae cells

[1]  L. N. Valenti,et al.  PNPLA3 GG Genotype and Carotid Atherosclerosis in Patients with Non-Alcoholic Fatty Liver Disease , 2013, PloS one.

[2]  Pierre M. Durand,et al.  A Role for Programmed Cell Death in the Microbial Loop , 2013, PloS one.

[3]  G. Araújo,et al.  Extraction of lipids from microalgae by ultrasound application: prospection of the optimal extraction method. , 2013, Ultrasonics sonochemistry.

[4]  Tadej Bajd,et al.  Evaluation of Mechanisms , 2013 .

[5]  Linhua Fan,et al.  A review of the use of sonication to control cyanobacterial blooms. , 2012, Water research.

[6]  C. Jiménez,et al.  Cell survival after UV radiation stress in the unicellular chlorophyte Dunaliella tertiolecta is mediated by DNA repair and MAPK phosphorylation , 2012, Journal of experimental botany.

[7]  Xiaoge Wu,et al.  Evaluation of the mechanisms of the effect of ultrasound on Microcystis aeruginosa at different ultrasonic frequencies. , 2012, Water research.

[8]  B. Gladman,et al.  A comparative study of the coagulation behaviour of marine microalgae , 2012, Journal of Applied Phycology.

[9]  L. Fan,et al.  Impact of sonication at 20 kHz on Microcystis aeruginosa, Anabaena circinalis and Chlorella sp. , 2012, Water research.

[10]  Yerong Zhu,et al.  Acetic acid-induced programmed cell death and release of volatile organic compounds in Chlamydomonas reinhardtii. , 2012, Plant physiology and biochemistry : PPB.

[11]  Xiaoge Wu,et al.  The effects of ultrasound on cyanobacteria , 2011 .

[12]  G. Price,et al.  Fatty acid profiling of Chlamydomonas reinhardtii under nitrogen deprivation. , 2011, Bioresource technology.

[13]  T J Mason,et al.  Assessing the effect of different ultrasonic frequencies on bacterial viability using flow cytometry , 2010, Journal of applied microbiology.

[14]  R. Wijffels,et al.  An Outlook on Microalgal Biofuels , 2010, Science.

[15]  E. C. de Meulenaer,et al.  Ultrasonic treatment for microbiological control of water systems. , 2010, Ultrasonics sonochemistry.

[16]  Vijayanand S. Moholkar,et al.  Mechanistic Assessment of Microalgal Lipid Extraction , 2010 .

[17]  Aharon Oren,et al.  THE ALGA DUNALIELLA. BIODIVERSITY, PHYSIOLOGY, GENOMICS AND BIOTECHNOLOGY , 2010 .

[18]  Zoran Herceg,et al.  Advantages and disadvantages of high power ultrasound application in the dairy industry , 2009 .

[19]  Ami Ben-Amotz,et al.  The Alga Dunaliella , 2009 .

[20]  Ana Cristina Oliveira,et al.  Microalgae as a raw material for biofuels production , 2009, Journal of Industrial Microbiology & Biotechnology.

[21]  Stefano Mantegna,et al.  Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. , 2008, Ultrasonics sonochemistry.

[22]  T J Mason,et al.  The development and evaluation of ultrasound for the treatment of bacterial suspensions. A study of frequency, power and sonication time on cultured Bacillus species. , 2003, Ultrasonics sonochemistry.

[23]  Ax,et al.  Influence of continuous phase viscosity on emulsification by ultrasound , 2000, Ultrasonics sonochemistry.

[24]  J. C. Green,et al.  Chlamydomonas Concordia Sp. Nov. (Chlorophyceae) from Oyster Ponds on the Île d'Oléron, France , 1978, Journal of the Marine Biological Association of the United Kingdom.

[25]  G. E. Fogg,et al.  Algal cultures and phytoplankton ecology , 1966 .

[26]  R. Guillard,et al.  Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. , 1962, Canadian journal of microbiology.

[27]  J. H. Ryther,et al.  Studies of marine planktonic diatoms , 1962 .

[28]  R. Frenzel About the effects of ultrasound. , 1947 .