Homogeneous electrochemiluminescence aptasensor based on hybridization chain reaction and magnetic separation assistance for Staphylococcus aureus

[1]  M. Loeb,et al.  Staphylococcus aureus bacteremia mortality: A systematic review and meta-analysis. , 2022, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[2]  Suleiman A. Haruna,et al.  A sensitive and accurate fluorescent genosensor for Staphylococcus aureus detection , 2021, Sensors and Actuators B: Chemical.

[3]  M. Gu,et al.  A new cognate aptamer pair-based sandwich-type electrochemical biosensor for sensitive detection of Staphylococcus aureus , 2021, Biosensors and Bioelectronics.

[4]  Juan Wang,et al.  CRISPR/Cas12a based fluorescence-enhanced lateral flow biosensor for detection of Staphylococcus aureus , 2021, Sensors and Actuators B: Chemical.

[5]  Yongping Dong,et al.  An “off-on-off” mode ECL sensor for drug detection based on the host-guest interaction of cucurbit[7]uril , 2021 .

[6]  Bin Qiu,et al.  Design of an electrochemiluminescence detection system through the regulation of charge density in a microchannel , 2021, Chemical science.

[7]  Yi Xiao,et al.  Mesoporous silica-mediated controllable electrochemiluminescence quenching for immunosensor with simplicity, sensitivity and tunable detection range. , 2021, Talanta.

[8]  Zhouping Wang,et al.  Fabrication of gold/silver nanodimer SERS probes for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus , 2021, Microchimica Acta.

[9]  Xueji Zhang,et al.  Portable detection of Staphylococcus aureus using personal glucose meter based on hybridization chain reaction strategy. , 2021, Talanta.

[10]  Yaping Tian,et al.  A versatile signal-on electrochemical biosensor for Staphylococcus aureus based on triple-helix molecular switch , 2021 .

[11]  M. Zourob,et al.  Ultrasensitive peptide-based multiplexed electrochemical biosensor for the simultaneous detection of Listeria monocytogenes and Staphylococcus aureus , 2020, Microchimica Acta.

[12]  Vu Ngoc Phan,et al.  Electrochemical stability of screen-printed electrodes modified with Au nanoparticles for detection of methicillin-resistant Staphylococcus aureus , 2020 .

[13]  Yuliang Zhao,et al.  Near-infrared Light-Initiated Hybridization Chain Reaction for Spatially- and Temporally-Resolved Signal Amplification. , 2019, Angewandte Chemie.

[14]  Wei Wen,et al.  Enrichment-Stowage-Cycle Strategy for Ultrasensitive Electrochemiluminescent Detection of HIV-DNA with Wide Dynamic Range. , 2019, Analytical chemistry.

[15]  Jinjuan Qiao,et al.  Highly sensitive and selective colorimetric determination ofStaphylococcus aureus viachicken anti-protein A IgY antibody , 2019, Analytical Methods.

[16]  Sima Singh,et al.  Nanomaterial-based optical and electrochemical techniques for detection of methicillin-resistant Staphylococcus aureus: a review , 2019, Microchimica Acta.

[17]  Zhenyu Lin,et al.  Electrochemiluminescence biosensor for miRNA-21 based on toehold-mediated strand displacement amplification with Ru(phen)32+ loaded DNA nanoclews as signal tags. , 2020, Biosensors & bioelectronics.

[18]  Shengqi Wang,et al.  Sensitive and specific detection of clinical bacteria via vancomycin-modified Fe3O4@Au nanoparticles and aptamer-functionalized SERS tags. , 2018, Journal of materials chemistry. B.

[19]  Yang Wang,et al.  Electrochemical integrated paper-based immunosensor modified with multi-walled carbon nanotubes nanocomposites for point-of-care testing of 17β-estradiol. , 2018, Biosensors & bioelectronics.

[20]  Duncan Graham,et al.  SERS Detection of Multiple Antimicrobial-Resistant Pathogens Using Nanosensors. , 2017, Analytical chemistry.

[21]  Yuguo Tang,et al.  Hybridization chain reaction directed DNA superstructures assembly for biosensing applications , 2017 .

[22]  Rosaleen J. Anderson,et al.  Methods for the detection and identification of pathogenic bacteria: past, present, and future. , 2017, Chemical Society reviews.

[23]  Sai Bi,et al.  Hybridization chain reaction: a versatile molecular tool for biosensing, bioimaging, and biomedicine. , 2017, Chemical Society reviews.

[24]  Valery A Petrenko,et al.  Gold nanoprobe functionalized with specific fusion protein selection from phage display and its application in rapid, selective and sensitive colorimetric biosensing of Staphylococcus aureus. , 2016, Biosensors & bioelectronics.

[25]  Kemin Wang,et al.  A combination of positive dielectrophoresis driven on-line enrichment and aptamer-fluorescent silica nanoparticle label for rapid and sensitive detection of Staphylococcus aureus. , 2015, The Analyst.

[26]  Jo V. Rushworth,et al.  Biosensors for Whole-Cell Bacterial Detection , 2014, Clinical Microbiology Reviews.

[27]  A. Edwards,et al.  How does Staphylococcus aureus escape the bloodstream? , 2011, Trends in microbiology.

[28]  Da Xing,et al.  Magnetic beads based rolling circle amplification-electrochemiluminescence assay for highly sensitive detection of point mutation. , 2010, Biosensors & bioelectronics.

[29]  S. Choi,et al.  The clinical significance of concurrent Staphylococcus aureus bacteriuria in patients with S. aureus bacteremia. , 2009, The Journal of infection.

[30]  B. Shen,et al.  Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus , 2009, Nucleic acids research.

[31]  S. Heckenberg,et al.  Hyponatraemia in adults with community-acquired bacterial meningitis. , 2006, QJM : monthly journal of the Association of Physicians.