The fourth order accuracy decomposition scheme for an evolution problem

In the present work, the symmetrized sequential-parallel decomposition method with the fourth order accuracy for the solution of Cauchy abstract problem with an operator under a split form is presented. The fourth order accuracy is reached by introducing a complex coefficient with the positive real part. For the considered scheme, the explicit ap rioriestimate is obtained.

[1]  Q. Sheng Solving Linear Partial Differential Equations by Exponential Splitting , 1989 .

[2]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[3]  H. H. Rachford,et al.  On the numerical solution of heat conduction problems in two and three space variables , 1956 .

[4]  A. A. Samarskii,et al.  Additive Difference Schemes and Iteration Methods for Problems of Mathematical Physics , 2001 .

[5]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .

[6]  H. Trotter On the product of semi-groups of operators , 1959 .

[7]  G. Fairweather,et al.  Some high accuracy difference schemes with a splitting operator for equations of parabolic and elliptic type , 1967 .

[8]  An implicit, numerical method for solving the two-dimensional heat equation , 1960 .

[9]  V. B. Andreev Splitting operator difference schemes for general second order p-dimensional parabolic equations with mixed derivatives☆ , 1967 .

[10]  A. Gourlay,et al.  Intermediate boundary corrections for split operator methods in three dimensions , 1967 .

[11]  S. G. Krein,et al.  Linear Equations in Banach Spaces , 1982 .

[13]  David Young,et al.  Alternating Direction Implicit Methods , 1962, Adv. Comput..

[14]  Boun Oumar Dia,et al.  Commutateurs de certains semi-groupes holomorphes et applications aux directions alternées , 1996 .

[15]  On an economical difference method for the solution of a multidimensional parabolic equation in an arbitrary region , 1963 .

[16]  Takashi Ichinose,et al.  The Norm Convergence of the Trotter–Kato Product Formula with Error Bound , 2001 .

[17]  T. Ichinose,et al.  The norm estimate of the difference between the Kac operator and the Schrödinger semigroup: A unified approach to the nonrelativistic and relativistic cases , 1998, Nagoya Mathematical Journal.

[18]  Zurab Gegechkori,et al.  High degree precision decomposition method for the evolution problem with an operator under a split form , 2002 .

[19]  R. Temam Sur la stabilité et la convergence de la méthode des pas fractionnaires , 1968 .

[20]  Paul R. Chernoff,et al.  Note on product formulas for operator semigroups , 1968 .

[21]  R. Varga,et al.  Implicit alternating direction methods , 1959 .

[22]  Semigroup product formulas and addition of unbounded operators , 1970 .

[23]  J. Rogava,et al.  High-degree Precision Decomposition Method for an Evolution Problem , 2001 .