Loss of the mitochondrial i‐AAA protease YME1L leads to ocular dysfunction and spinal axonopathy

Disturbances in the morphology and function of mitochondria cause neurological diseases, which can affect the central and peripheral nervous system. The i‐AAA protease YME1L ensures mitochondrial proteostasis and regulates mitochondrial dynamics by processing of the dynamin‐like GTPase OPA1. Mutations in YME1L cause a multi‐systemic mitochondriopathy associated with neurological dysfunction and mitochondrial fragmentation but pathogenic mechanisms remained enigmatic. Here, we report on striking cell‐type‐specific defects in mice lacking YME1L in the nervous system. YME1L‐deficient mice manifest ocular dysfunction with microphthalmia and cataracts and develop deficiencies in locomotor activity due to specific degeneration of spinal cord axons, which relay proprioceptive signals from the hind limbs to the cerebellum. Mitochondrial fragmentation occurs throughout the nervous system and does not correlate with the degenerative phenotype. Deletion of Oma1 restores tubular mitochondria but deteriorates axonal degeneration in the absence of YME1L, demonstrating that impaired mitochondrial proteostasis rather than mitochondrial fragmentation causes the observed neurological defects.

[1]  F. Villarroya,et al.  Mitochondrial DNA and TLR9 drive muscle inflammation upon Opa1 deficiency , 2018, The EMBO journal.

[2]  C. Moraes,et al.  Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease , 2018, FEBS letters.

[3]  T. Langer,et al.  PARL partitions the lipid transfer protein STARD7 between the cytosol and mitochondria , 2018, The EMBO journal.

[4]  A. Paetau,et al.  Loss of mtDNA activates astrocytes and leads to spongiotic encephalopathy , 2018, Nature Communications.

[5]  H. Kawamata,et al.  Proteinopathies and OXPHOS dysfunction in neurodegenerative diseases , 2017, The Journal of cell biology.

[6]  J. Auwerx,et al.  Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity , 2017, Nature.

[7]  T. Schwarz,et al.  Mitostasis in Neurons: Maintaining Mitochondria in an Extended Cellular Architecture , 2017, Neuron.

[8]  N. Boddaert,et al.  Mutations in DNM1L, as in OPA1, result indominant optic atrophy despite opposite effectson mitochondrial fusion and fission , 2017, Brain : a journal of neurology.

[9]  I. Bohovych,et al.  Metalloproteases of the Inner Mitochondrial Membrane. , 2017, Biochemistry.

[10]  D. Chan,et al.  Mitochondrial Dynamics in Regulating the Unique Phenotypes of Cancer and Stem Cells. , 2017, Cell metabolism.

[11]  Prashant Mishra,et al.  OPA1 Isoforms in the Hierarchical Organization of Mitochondrial Functions. , 2017, Cell reports.

[12]  K. Mihara,et al.  Molecular basis of selective mitochondrial fusion by heterotypic action between OPA1 and cardiolipin , 2017, Nature Cell Biology.

[13]  Z. Sheng,et al.  The Interplay of Axonal Energy Homeostasis and Mitochondrial Trafficking and Anchoring. , 2017, Trends in cell biology.

[14]  K. Bürk Friedreich Ataxia: current status and future prospects , 2017, Cerebellum & Ataxias.

[15]  B. Su,et al.  Abnormalities of Mitochondrial Dynamics in Neurodegenerative Diseases , 2017, Antioxidants.

[16]  M. Zeviani,et al.  MtDNA-maintenance defects: syndromes and genes , 2017, Journal of Inherited Metabolic Disease.

[17]  Y. Yoon,et al.  The short variant of the mitochondrial dynamin OPA1 maintains mitochondrial energetics and cristae structure , 2017, The Journal of Biological Chemistry.

[18]  E. Rugarli,et al.  The Mitochondrial m-AAA Protease Prevents Demyelination and Hair Greying , 2016, PLoS genetics.

[19]  H. Roš,et al.  Loss of Dendritic Complexity Precedes Neurodegeneration in a Mouse Model with Disrupted Mitochondrial Distribution in Mature Dendrites , 2016, Cell reports.

[20]  P. Barboni,et al.  A neurodegenerative perspective on mitochondrial optic neuropathies , 2016, Acta Neuropathologica.

[21]  T. Wienker,et al.  Homozygous YME1L1 mutation causes mitochondriopathy with optic atrophy and mitochondrial network fragmentation , 2016, eLife.

[22]  T. Langer,et al.  OPA1 processing in cell death and disease – the long and short of it , 2016, Journal of Cell Science.

[23]  L. Scorrano,et al.  Mitochondrial Cristae: Where Beauty Meets Functionality. , 2016, Trends in biochemical sciences.

[24]  Prashant Mishra,et al.  Metabolic regulation of mitochondrial dynamics , 2016, The Journal of cell biology.

[25]  T. Wai,et al.  Mitochondrial Dynamics and Metabolic Regulation , 2016, Trends in Endocrinology & Metabolism.

[26]  E. Rugarli,et al.  Loss of OMA1 delays neurodegeneration by preventing stress-induced OPA1 processing in mitochondria , 2016, The Journal of cell biology.

[27]  P. Bénit,et al.  Imbalanced OPA1 processing and mitochondrial fragmentation cause heart failure in mice , 2015, Science.

[28]  Z. Sheng,et al.  Regulation of mitochondrial transport in neurons. , 2015, Experimental cell research.

[29]  C. López-Otín,et al.  New roles for mitochondrial proteases in health, ageing and disease , 2015, Nature Reviews Molecular Cell Biology.

[30]  P. Chinnery,et al.  Disturbed mitochondrial dynamics and neurodegenerative disorders , 2015, Nature Reviews Neurology.

[31]  Elyssa B. Margolis,et al.  Loss of Mitochondrial Fission Depletes Axonal Mitochondria in Midbrain Dopamine Neurons , 2014, The Journal of Neuroscience.

[32]  Xiaodong Wang,et al.  Activation of mitochondrial protease OMA1 by Bax and Bak promotes cytochrome c release during apoptosis , 2014, Proceedings of the National Academy of Sciences.

[33]  Prashant Mishra,et al.  Mitochondrial dynamics and inheritance during cell division, development and disease , 2014, Nature Reviews Molecular Cell Biology.

[34]  S. Pulst,et al.  Loss of Miro1-directed mitochondrial movement results in a novel murine model for neuron disease , 2014, Proceedings of the National Academy of Sciences.

[35]  C. López-Otín,et al.  OMA1 mediates OPA1 proteolysis and mitochondrial fragmentation in experimental models of ischemic kidney injury. , 2014, American journal of physiology. Renal physiology.

[36]  Zhiyin Song,et al.  Membrane depolarization activates the mitochondrial protease OMA1 by stimulating self‐cleavage , 2014, EMBO reports.

[37]  Prashant Mishra,et al.  Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation. , 2014, Cell metabolism.

[38]  Z. Sheng,et al.  Mitochondrial trafficking and anchoring in neurons: New insight and implications , 2014, The Journal of cell biology.

[39]  T. Langer,et al.  Stress‐induced OMA1 activation and autocatalytic turnover regulate OPA1‐dependent mitochondrial dynamics , 2014, The EMBO journal.

[40]  E. Rugarli,et al.  The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission , 2014, The Journal of cell biology.

[41]  J. Nunnari,et al.  Mitochondrial form and function , 2014, Nature.

[42]  Matt Kaeberlein,et al.  mTOR Inhibition Alleviates Mitochondrial Disease in a Mouse Model of Leigh Syndrome , 2013, Science.

[43]  Joseph C. Genereux,et al.  Stress-regulated translational attenuation adapts mitochondrial protein import through Tim17A degradation. , 2013, Cell metabolism.

[44]  K. Conzelmann,et al.  Inflammation-induced alteration of astrocyte mitochondrial dynamics requires autophagy for mitochondrial network maintenance. , 2013, Cell metabolism.

[45]  Sara Cipolat,et al.  Mitochondrial Cristae Shape Determines Respiratory Chain Supercomplexes Assembly and Respiratory Efficiency , 2013, Cell.

[46]  T. Wai,et al.  TRIAP1/PRELI complexes prevent apoptosis by mediating intramitochondrial transport of phosphatidic acid. , 2013, Cell metabolism.

[47]  M. Miquel,et al.  OPA1 loss of function affects in vitro neuronal maturation. , 2013, Brain : a journal of neurology.

[48]  P. Bovolenta,et al.  The impairment of HCCS leads to MLS syndrome by activating a non-canonical cell death pathway in the brain and eyes , 2013, EMBO molecular medicine.

[49]  J. Fratkin,et al.  Neuropathology of degenerative ataxias. , 2012, Handbook of clinical neurology.

[50]  V. Tiranti,et al.  Mutations in COX7B cause microphthalmia with linear skin lesions, an unconventional mitochondrial disease. , 2012, American journal of human genetics.

[51]  E. Rugarli,et al.  AFG3L2 supports mitochondrial protein synthesis and Purkinje cell survival. , 2012, The Journal of clinical investigation.

[52]  A. M. van der Bliek,et al.  Mitochondrial Fission, Fusion, and Stress , 2012, Science.

[53]  M. S. Fernández-García,et al.  Loss of mitochondrial protease OMA1 alters processing of the GTPase OPA1 and causes obesity and defective thermogenesis in mice , 2012, The EMBO journal.

[54]  J. Nunnari,et al.  Mitochondria: In Sickness and in Health , 2012, Cell.

[55]  J. Zeman,et al.  YME1L controls the accumulation of respiratory chain subunits and is required for apoptotic resistance, cristae morphogenesis, and cell proliferation , 2012, Molecular biology of the cell.

[56]  James B. Mitchell,et al.  Iron Insufficiency Compromises Motor Neurons and Their Mitochondrial Function in Irp2-Null Mice , 2011, PloS one.

[57]  L. Scorrano,et al.  During autophagy mitochondria elongate, are spared from degradation and sustain cell viability , 2011, Nature Cell Biology.

[58]  T. Jessell,et al.  Clarke's Column Neurons as the Focus of a Corticospinal Corollary Circuit , 2010, Nature Neuroscience.

[59]  R. Palmiter,et al.  Complex I deficiency due to loss of Ndufs4 in the brain results in progressive encephalopathy resembling Leigh syndrome , 2010, Proceedings of the National Academy of Sciences.

[60]  E. Rugarli,et al.  Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1 , 2009, The Journal of cell biology.

[61]  A. M. van der Bliek,et al.  Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells , 2009, The Journal of cell biology.

[62]  G. Casari,et al.  Haploinsufficiency of AFG3L2, the Gene Responsible for Spinocerebellar Ataxia Type 28, Causes Mitochondria-Mediated Purkinje Cell Dark Degeneration , 2009, The Journal of Neuroscience.

[63]  Jean-Claude Martinou,et al.  SLP‐2 is required for stress‐induced mitochondrial hyperfusion , 2009, The EMBO journal.

[64]  W. Watt,et al.  Mice with mitochondrial complex I deficiency develop a fatal encephalomyopathy. , 2008, Cell metabolism.

[65]  Min Wu,et al.  Fission and selective fusion govern mitochondrial segregation and elimination by autophagy , 2008, The EMBO journal.

[66]  Hirokazu Fukui,et al.  Cytochrome c oxidase deficiency in neurons decreases both oxidative stress and amyloid formation in a mouse model of Alzheimer's disease , 2007, Proceedings of the National Academy of Sciences.

[67]  A. M. van der Bliek,et al.  Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage , 2007, The Journal of cell biology.

[68]  D. Chan,et al.  OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L , 2007, The Journal of cell biology.

[69]  J. McCaffery,et al.  Mitochondrial Fusion Protects against Neurodegeneration in the Cerebellum , 2007, Cell.

[70]  R. Adler,et al.  Molecular mechanisms of optic vesicle development: complexities, ambiguities and controversies. , 2007, Developmental biology.

[71]  H. Waterham,et al.  A lethal defect of mitochondrial and peroxisomal fission. , 2007, The New England journal of medicine.

[72]  A. Pestronk,et al.  Altered Axonal Mitochondrial Transport in the Pathogenesis of Charcot-Marie-Tooth Disease from Mitofusin 2 Mutations , 2007, The Journal of Neuroscience.

[73]  F. Baas,et al.  Axonal neuropathy with optic atrophy is caused by mutations in mitofusin 2 , 2006, Annals of neurology.

[74]  T. Jacks,et al.  Cell type-specific effects of Rb deletion in the murine retina. , 2004, Genes & development.

[75]  E. Rugarli,et al.  Axonal degeneration in paraplegin-deficient mice is associated with abnormal mitochondria and impairment of axonal transport. , 2004, The Journal of clinical investigation.

[76]  J. Grosgeorge,et al.  Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy , 2000, Nature Genetics.

[77]  O. Kretz,et al.  Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety , 1999, Nature Genetics.

[78]  the original work is properly cited. , 2022 .