Plasma accelerator-based ultrabright x-ray beams from ultrabright electron beams

We provide a pathway to compact ultrabright light sources, based on ultrabright, high energy electron beams emerging from a combination of plasma Wakefield acceleration and plasma photocathodes. While plasma acceleration is known to produce accelerating fields three or four orders of magnitude larger than conventional accelerators, the plasma photocathode allows production of electron beams three or four orders of magnitude brighter than conventional, and thus is suitable to unleash the full potential of plasma accelerators. In particular, this is the case for various types of light sources, which profit enormously from an increased electron beam brightness. Building on the recent first experimental demonstration of the plasma photocathode, in this work we discuss the prospects of plasma photocathodes for key photon source approaches such as x-ray free-electron lasers, betatron radiation, ion-channel lasers and inverse Compton scattering.

[1]  S. G. Anderson,et al.  Characterization and applications of a tunable, laser-based, MeV-class Compton-scattering γ -ray source , 2010 .

[2]  Scott C. Wilks,et al.  Beam Loading in Plasma Accelerators , 1987 .

[3]  G. White,et al.  High-efficiency acceleration of an electron beam in a plasma wakefield accelerator , 2014, Nature.

[4]  Shuoqin Wang,et al.  X-ray emission from betatron motion in a plasma wiggler. , 2002, Physical review letters.

[5]  Claudio Pellegrini,et al.  Collective instabilities and high-gain regime in a free electron laser , 1984 .

[6]  Zhirong Huang,et al.  Compact x-ray free-electron laser from a laser-plasma accelerator using a transverse-gradient undulator. , 2012, Physical review letters.

[7]  J. Vieira,et al.  Beam loading in the nonlinear regime of plasma-based acceleration. , 2008, Physical review letters.

[8]  David L. Bruhwiler,et al.  Electron beam manipulation, injection and acceleration in plasma wakefield accelerators by optically generated plasma density spikes , 2016 .

[9]  P Krejcik,et al.  Ionization-induced electron trapping in ultrarelativistic plasma wakes. , 2007, Physical review letters.

[10]  S. Corde,et al.  Direct Observation of Plasma Waves and Dynamics Induced by Laser-Accelerated Electron Beams , 2018, Physical Review X.

[11]  K. Moon,et al.  Longitudinal phase space dynamics of witness bunch during the Trojan Horse injection for plasma-based particle accelerators , 2019, Physics of Plasmas.

[12]  Sebastian M. Pfotenhauer,et al.  A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator , 2008 .

[13]  J. B. Rosenzweig,et al.  Energy Loss of a High Charge Bunched Electron Beam in Plasma:. Analysis , 2003 .

[14]  S. Mitri,et al.  On the Importance of Electron Beam Brightness in High Gain Free Electron Lasers , 2015 .

[15]  C. B. Schroeder,et al.  Quasi-monoenergetic femtosecond photon sources from Thomson Scattering using laser plasma accelerators and plasma channels , 2014, 1406.1832.

[16]  J. B. Rosenzweig,et al.  Advanced schemes for underdense plasma photocathode wakefield accelerators: pathways towards ultrahigh brightness electron beams , 2019, Philosophical Transactions of the Royal Society A.

[17]  V. Sundström,et al.  Femtochemistry and femtobiology : ultrafast reaction dynamics at atomic-scale resolution : Nobel Symposium 101, Björkborn, Sweden, September 9-12, 1996 , 1997 .

[18]  John R. Cary,et al.  Experimental Opportunities for the Ion Channel Laser , 2018, 2018 IEEE Advanced Accelerator Concepts Workshop (AAC).

[19]  Alessandro Variola,et al.  Photon flux and spectrum of γ-rays Compton sources , 2012 .

[20]  O Willi,et al.  Monoenergetic energy doubling in a hybrid laser-plasma wakefield accelerator. , 2010, Physical review letters.

[21]  B. McNeil,et al.  X-ray free-electron lasers , 2010 .

[22]  Wei Lu,et al.  Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator , 2007, Nature.

[23]  A Mostacci,et al.  Longitudinal Phase-Space Manipulation with Beam-Driven Plasma Wakefields. , 2019, Physical review letters.

[24]  J. Cary,et al.  VORPAL: a versatile plasma simulation code , 2004 .

[25]  J. Hajdu,et al.  Potential for biomolecular imaging with femtosecond X-ray pulses , 2000, Nature.

[26]  J. B. Rosenzweig,et al.  Directions in plasma wakefield acceleration , 2019, Philosophical Transactions of the Royal Society A.

[27]  A. Pukhov,et al.  X-ray generation in strongly nonlinear plasma waves. , 2004, Physical review letters.

[28]  Arthur L. Robinson,et al.  History of Synchrotron Radiation , 2015 .

[29]  J. R. Cary,et al.  Generation and acceleration of electron bunches from a plasma photocathode , 2019, Nature Physics.

[30]  G. Lambert,et al.  Femtosecond x rays from laser-plasma accelerators , 2013, 1301.5066.

[31]  Frederic V. Hartemann,et al.  Three-dimensional time and frequency-domain theory of femtosecond x-ray pulse generation through Thomson scattering , 2004 .

[32]  Nan Phinney,et al.  FACET-II Accelerator Research with Beams of Extreme Intensities , 2016 .

[33]  Dino A. Jaroszynski,et al.  The ion channel free-electron laser with varying betatron amplitude , 2014 .

[34]  K. Kusche,et al.  An inverse free electron laser acceleration-driven Compton scattering X-ray source , 2017, Scientific Reports.

[35]  Alex Murokh,et al.  Ultrahigh brightness bunches from hybrid plasma accelerators as drivers of 5th generation light sources , 2014 .

[36]  J Osterhoff,et al.  Tunable Plasma-Based Energy Dechirper. , 2018, Physical review letters.

[37]  Claudio Pellegrini,et al.  The history of X-ray free-electron lasers , 2012 .

[38]  Michael C. Downer,et al.  FIRST MEASUREMENTS OF TROJAN HORSE INJECTION IN A PLASMA WAKEFIELD ACCELERATOR , 2017 .

[39]  David H. Whittum,et al.  Electromagnetic instability of the ion-focused regime , 1992 .

[40]  K. A. Marsh,et al.  Multi-gigaelectronvolt acceleration of positrons in a self-loaded plasma wakefield , 2015, Nature.

[41]  Frank Tsung,et al.  Transverse emittance growth in staged laser-wakefield acceleration , 2012 .

[42]  K C Holmes Synchrotron radiation and its applications in biology. , 1974, Endeavour.

[43]  Michael Litos,et al.  Hot spots and dark current in advanced plasma wakefield accelerators , 2016 .

[44]  J. Rosenzweig,et al.  Ultracold electron bunch generation via plasma photocathode emission and acceleration in a beam-driven plasma blowout. , 2012, Physical review letters.

[45]  Christopher Murphy,et al.  Plasma Wakefield Accelerator Research 2019 - 2040 : A community-driven UK roadmap compiled by the Plasma Wakefield Accelerator Steering Committee (PWASC) , 2019, 1904.09205.

[46]  David L. Bruhwiler,et al.  Optical plasma torch electron bunch generation in plasma wakefield accelerators , 2015 .

[47]  T. Kurz,et al.  Hybrid LWFA–PWFA staging as a beam energy and brightness transformer: conceptual design and simulations , 2019, Philosophical Transactions of the Royal Society A.

[48]  J. Cary,et al.  Single-stage plasma-based correlated energy spread compensation for ultrahigh 6D brightness electron beams , 2017, Nature Communications.

[49]  Henry N. Chapman,et al.  Femtosecond X-ray protein nanocrystallography , 2010 .

[50]  Aihua Deng,et al.  Downramp-assisted underdense photocathode electron bunch generation in plasma wakefield accelerators , 2014, 1412.4844.

[51]  Ferenc Krausz,et al.  Laser-driven soft-X-ray undulator source , 2009 .

[52]  Brendan O'Shea,et al.  Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator , 2016, Nature Communications.

[53]  B. Ersfeld,et al.  Tunable Electron Multibunch Production in Plasma Wakefield Accelerators , 2014 .

[54]  J. Zhang,et al.  Phase Space Dynamics of a Plasma Wakefield Dechirper for Energy Spread Reduction. , 2019, Physical review letters.

[55]  Mauro Migliorati,et al.  Laser-driven electron beamlines generated by coupling laser-plasma sources with conventional transport systems , 2012 .

[56]  Ulrich Schramm,et al.  Fundamentals and Applications of Hybrid LWFA-PWFA , 2019, Applied Sciences.

[57]  H. Freund,et al.  Free-Electron Lasers: Status and Applications , 2001, Science.