Plasma microRNA signature associated with retinopathy in patients with type 2 diabetes

[1]  C. Weber,et al.  Small Things Matter: Relevance of MicroRNAs in Cardiovascular Disease , 2020, Frontiers in Physiology.

[2]  M. Daemen,et al.  Noncanonical inhibition of caspase-3 by a nuclear microRNA confers endothelial protection by autophagy in atherosclerosis , 2020, Science Translational Medicine.

[3]  Raghu Kalluri,et al.  The biology, function, and biomedical applications of exosomes , 2020, Science.

[4]  C. Weber,et al.  High dose rosuvastatin increases ABCA1 transporter in human atherosclerotic plaques in a cholesterol-independent fashion. , 2020, International journal of cardiology.

[5]  Thawfeek M. Varusai,et al.  The reactome pathway knowledgebase , 2019, Nucleic Acids Res..

[6]  P. Peplow,et al.  MicroRNAs as biomarkers of diabetic retinopathy and disease progression , 2019, Neural regeneration research.

[7]  A. Blum,et al.  MicroRNA-423 may regulate diabetic vasculopathy , 2019, Clinical and Experimental Medicine.

[8]  Liankun Sun,et al.  RNA-Seq Revealed Novel Non-proliferative Retinopathy Specific Circulating MiRNAs in T2DM Patients , 2019, Front. Genet..

[9]  Alireza Hadj Khodabakhshi,et al.  Metascape provides a biologist-oriented resource for the analysis of systems-level datasets , 2019, Nature Communications.

[10]  David Young,et al.  Faculty Opinions recommendation of miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. , 2019, Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature.

[11]  A. Blum,et al.  Serum miR-122 levels correlate with diabetic retinopathy , 2019, Clinical and Experimental Medicine.

[12]  W. Qian,et al.  Serum microRNA-221 as a biomarker for diabetic retinopathy in patients associated with type 2 diabetes. , 2018, International journal of ophthalmology.

[13]  Damian Szklarczyk,et al.  STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets , 2018, Nucleic Acids Res..

[14]  M. Porta,et al.  Molecular and functional characterization of circulating extracellular vesicles from diabetic patients with and without retinopathy and healthy subjects , 2018, Experimental eye research.

[15]  A. Angelini,et al.  MicroRNA signatures in cardiac biopsies and detection of allograft rejection. , 2018, The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation.

[16]  Z. Y.,et al.  Hypothalamic stem cells control ageing speed partly through exosomal miRNAs , 2018, Yearbook of Paediatric Endocrinology.

[17]  Li Tian,et al.  RNA sequencing identified specific circulating miRNA biomarkers for early detection of diabetes retinopathy. , 2018, American journal of physiology. Endocrinology and metabolism.

[18]  R. Zimmer,et al.  miR-103 promotes endothelial maladaptation by targeting lncWDR59 , 2018, Nature Communications.

[19]  D. Bartel Metazoan MicroRNAs , 2018, Cell.

[20]  Hsien-Da Huang,et al.  miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions , 2017, Nucleic Acids Res..

[21]  Jay W. Shin,et al.  An integrated expression atlas of miRNAs and their promoters in human and mouse , 2017, Nature Biotechnology.

[22]  D. Cai,et al.  Hypothalamic stem cells control aging speed partly through exosomal miRNAs , 2017, Nature.

[23]  M. Mayr,et al.  Angiogenic microRNAs Linked to Incidence and Progression of Diabetic Retinopathy in Type 1 Diabetes , 2015, Diabetes.

[24]  J. Deiuliis MicroRNAs as regulators of metabolic disease: pathophysiologic significance and emerging role as biomarkers and therapeutics , 2015, International Journal of Obesity.

[25]  F. Cipollone,et al.  MicroRNA profiling in migraine without aura: Pilot study , 2015, Annals of medicine.

[26]  E. Obberghen,et al.  Circulating microRNAs and diabetes: potential applications in medical practice , 2015, Diabetologia.

[27]  F. Cipollone,et al.  Role of microRNAs in the modulation of diabetic retinopathy , 2014, Progress in Retinal and Eye Research.

[28]  S. Lawler,et al.  MicroRNAs in cancer: biomarkers, functions and therapy. , 2014, Trends in molecular medicine.

[29]  F. Buttitta,et al.  Plasma exosome microRNA profiling unravels a new potential modulator of adiponectin pathway in diabetes: effect of glycemic control. , 2014, The Journal of clinical endocrinology and metabolism.

[30]  Lihteh Wu,et al.  Classification of diabetic retinopathy and diabetic macular edema. , 2013, World journal of diabetes.

[31]  Henning Hermjakob,et al.  The Reactome pathway knowledgebase , 2013, Nucleic Acids Res..

[32]  A. Tijsen,et al.  Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? , 2012, Circulation research.

[33]  M. Mayr,et al.  Plasma MicroRNA Profiling Reveals Loss of Endothelial MiR-126 and Other MicroRNAs in Type 2 Diabetes , 2010, Circulation research.

[34]  J. Lötvall,et al.  Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells , 2007, Nature Cell Biology.

[35]  Claus Lindbjerg Andersen,et al.  Normalization of Real-Time Quantitative Reverse Transcription-PCR Data: A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets , 2004, Cancer Research.

[36]  F. Speleman,et al.  Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes , 2002, Genome Biology.

[37]  C. Baird,et al.  The pilot study. , 2000, Orthopedic nursing.

[38]  T. Wong,et al.  Diabetic retinopathy , 2016, Nature Reviews Disease Primers.

[39]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[40]  T. Sano,et al.  [Diabetic retinopathy]. , 2001, Nihon rinsho. Japanese journal of clinical medicine.