연속 영상 기반 실시간 객체 분할

본 논문은 GPU(Graphics Processing Unit) 에서 CUDA(Compute Unified Device Architecture)를 사용하여 실시간으로 객체를 분할하는 방 법을 소개한다. 최근에 감시 시스템, 오브젝트 추적, 모션 분석 등의 많은 응용 프로그램들은 실시간 처리가 요구된다. 이러한 단계의 선행부분 인 객체 분할 기법은 기존 CPU 기반의 시스템으로는 실시간 처리에 제약이 발생한다. NVIDIA에서는 Parallel Processing for General Computation 을 위해 그래픽 하드웨어 제약을 개선한 CUDA platform을 제공하고 있다. 본 논문에서는 객체 추출 단계에 대표적인 적응적 가 우시안 혼합 배경 모델링(Adaptive Gaussian Mixture Background Modeling) 알고리즘과 Classification 기법으로 사용되는 CCL (Connected Component Labeling) 알고리즘을 적용하였다. 본 논문은 2.4GHz를 갖는 Core2 Quad 프로세서와 비교하여 평가하였고 그 결과 3~4배 이상의 성능향상을 확인할 수 있었다.