Improving battery safety by reducing the formation of Li dendrites with the use of amorphous silicon polymer anodes

[1]  T. Ohta,et al.  Mechanochemical lithiation of layered polysilane. , 2014, Chemical communications.

[2]  H. Maruyama,et al.  High-power electrochemical energy storage system employing stable radical pseudocapacitors. , 2014, Angewandte Chemie.

[3]  T. Yokoshima,et al.  Highly durable SiOC composite anode prepared by electrodeposition for lithium secondary batteries , 2012 .

[4]  Kazunori Arifuku,et al.  Organic tailored batteries materials using stable open-shell molecules with degenerate frontier orbitals. , 2011, Nature materials.

[5]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[6]  J. Cabana,et al.  Beyond Intercalation‐Based Li‐Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions , 2010, Advanced materials.

[7]  G. Yushin,et al.  High-performance lithium-ion anodes using a hierarchical bottom-up approach. , 2010, Nature materials.

[8]  Ilias Belharouak,et al.  High-energy cathode material for long-life and safe lithium batteries. , 2009, Nature materials.

[9]  Byoungwoo Kang,et al.  Battery materials for ultrafast charging and discharging , 2009, Nature.

[10]  M. Armand,et al.  Conjugated dicarboxylate anodes for Li-ion batteries. , 2009, Nature materials.

[11]  M. Armand,et al.  Building better batteries , 2008, Nature.

[12]  Bruno Scrosati,et al.  Nanostructured Sn–C Composite as an Advanced Anode Material in High‐Performance Lithium‐Ion Batteries , 2007 .

[13]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[14]  Ichiro Imae,et al.  Novel Family of Molecular Glasses Based on Silicon-containing Compounds , 2005 .

[15]  I. Pereyra,et al.  Annealing effects of highly homogeneous a-Si1−xCx:H , 2003 .

[16]  Shimura,et al.  Network Polysilanes: Synthesis, Electrical Conductivity, Charge-Transfer Interaction, and Photoconductivity. , 2000, Angewandte Chemie.

[17]  Tsutomu Miyasaka,et al.  Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material , 1997 .

[18]  A. Sekiguchi,et al.  [Me(PhMe2Si)2SiLi] and [Ph(Me3Si)2SiLi]: Preparation, Characterization, and Evidence for an Intramolecular LiPh Interaction† , 1997 .

[19]  M. Fujimoto,et al.  Electrochemical behaviour of carbon electrodes in some electrolyte solutions , 1996 .

[20]  T. Iijima,et al.  Electrodic characteristics of various carbon materials for lithium rechargeable batteries , 1995 .

[21]  Tsutomu Ohzuku,et al.  Zero‐Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ] O 4 for Rechargeable Lithium Cells , 1995 .

[22]  Dahn,et al.  Structure of siloxene and layered polysilane (Si6H6). , 1993, Physical review. B, Condensed matter.

[23]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[24]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .