暂无分享,去创建一个
[1] Andreas Christmann,et al. Bouligand Derivatives and Robustness of Support Vector Machines for Regression , 2007, J. Mach. Learn. Res..
[2] B. R. Clarke. Uniqueness and Fréchet differentiability of functional solutions to maximum likelihood type equations , 1983 .
[3] Kamiar Rahnama Rad,et al. A scalable estimate of the extra-sample prediction error via approximate leave-one-out , 2018, 1801.10243.
[4] R. V. Mises. On the Asymptotic Distribution of Differentiable Statistical Functions , 1947 .
[5] Saharon Rosset,et al. From Fixed-X to Random-X Regression: Bias-Variance Decompositions, Covariance Penalties, and Prediction Error Estimation , 2017, Journal of the American Statistical Association.
[6] L. Stefanski,et al. The Calculus of M-Estimation , 2002 .
[7] Trevor J. Hastie,et al. Confidence intervals for random forests: the jackknife and the infinitesimal jackknife , 2013, J. Mach. Learn. Res..
[8] Robert Tibshirani,et al. An Introduction to the Bootstrap , 1994 .
[9] Yong Liu,et al. Efficient Approximation of Cross-Validation for Kernel Methods using Bouligand Influence Function , 2014, ICML.
[10] Jun Shao,et al. Differentiability of Statistical Functionals and Consistency of the Jackknife , 1993 .
[11] Dudley,et al. Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .
[12] M. Stone. Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .
[13] Percy Liang,et al. Understanding Black-box Predictions via Influence Functions , 2017, ICML.
[14] M. Debruyne,et al. Model Selection in Kernel Based Regression using the Influence Function , 2008 .
[15] S. T. Buckland,et al. An Introduction to the Bootstrap. , 1994 .
[16] L. Fernholz. von Mises Calculus For Statistical Functionals , 1983 .
[17] B. Efron. The Estimation of Prediction Error , 2004 .
[18] I. Sandberg. Global inverse function theorems , 1980 .
[19] Frederick R. Forst,et al. On robust estimation of the location parameter , 1980 .
[20] Michael I. Jordan,et al. A Swiss Army Infinitesimal Jackknife , 2018, AISTATS.
[21] James R. Schott,et al. Matrix Analysis for Statistics , 2005 .
[22] Suchi Saria,et al. Can You Trust This Prediction? Auditing Pointwise Reliability After Learning , 2019, AISTATS.
[23] J. Shao,et al. The jackknife and bootstrap , 1996 .
[24] Vahid Tarokh,et al. On Optimal Generalizability in Parametric Learning , 2017, NIPS.