The Group Action Method and Radial Projection

The group action methods have been playing an important role in recent studies about the configuration problems inside a compact set E in Euclidean spaces with given Hausdorff dimension. In this paper, we further explore the group action methods to study the radial projection problems for Salem sets.

[1]  P. Mattila Hausdorff dimension, projections, and the Fourier transform , 2004 .

[2]  A. Iosevich,et al.  On angles determined by fractal subsets of the Euclidean space via Sobolev bounds for bi-linear operators , 2011, 1110.6792.

[3]  Bochen Liu An L2-identity and pinned distance problem , 2018, Geometric and Functional Analysis.

[4]  J. M. Marstrand Some Fundamental Geometrical Properties of Plane Sets of Fractional Dimensions , 1954 .

[5]  Tuomas Orponen On the dimension and smoothness of radial projections , 2017, Analysis & PDE.

[6]  A. Greenleaf,et al.  Configuration Sets with Nonempty Interior , 2019, The Journal of Geometric Analysis.

[7]  A. Greenleaf,et al.  A group-theoretic viewpoint on Erdos-Falconer problems and the Mattila integral , 2013, 1306.3598.

[8]  K. Falconer Hausdorff dimension and the exceptional set of projections , 1982 .

[9]  Bochen Liu Group actions, the Mattila integral and applications , 2017, Proceedings of the American Mathematical Society.

[10]  P. Mattila,et al.  How large dimension guarantees a given angle? , 2011, 1101.1426.

[11]  I. Łaba,et al.  Finite configurations in sparse sets , 2013, 1307.1174.

[12]  K. Conrad,et al.  Group Actions , 2018, Cyber Litigation: The Legal Principles.

[13]  Hausdorff Dimension , 2012, The Krzyż Conjecture: Theory and Methods.

[14]  Joshua Zahl,et al.  On the dimension of exceptional parameters for nonlinear projections, and the discretized Elekes-R\'onyai theorem , 2021 .

[15]  P. Shmerkin,et al.  A non-linear version of Bourgain’s projection theorem , 2020, Journal of the European Mathematical Society.

[16]  P. Mattila Fourier Analysis and Hausdorff Dimension , 2015 .