Carathéodory, Helly and the Others in the Max-Plus World

Carathéodory’s, Helly’s and Radon’s theorems are three basic results in discrete geometry. Their max-plus or tropical analogues have been proved by various authors. We show that more advanced results in discrete geometry also have max-plus analogues, namely, the colorful Carathéodory theorem and the Tverberg theorem. A conjecture connected to the Tverberg theorem—Sierksma’s conjecture—although still open for the usual convexity, is shown to be true in the max-plus setting.

[1]  Anthony Joseph,et al.  First European Congress of Mathematics , 1994 .

[2]  Imre Bárány,et al.  A generalization of carathéodory's theorem , 1982, Discret. Math..

[3]  C. Leake Synchronization and Linearity: An Algebra for Discrete Event Systems , 1994 .

[4]  Victor Pavlovich Maslov,et al.  Idempotent Mathematics and Mathematical Physics , 2005 .

[5]  Geert Jan Olsder,et al.  Synchronization and Linearity: An Algebra for Discrete Event Systems , 1994 .

[6]  M. Gondran,et al.  Linear Algebra in Dioids: A Survey of Recent Results , 1984 .

[7]  Peter Butkovič,et al.  Max-Algebra - the Linear Algebra of Combinatorics? , 2002 .

[8]  B. Sturmfels,et al.  First steps in tropical geometry , 2003, math/0306366.

[9]  M. Joswig,et al.  Affine buildings and tropical convexity. , 2007, 0706.1918.

[10]  P. Regularity of matrices in min-algebra and its time-complexity , 2003 .

[11]  M. Plus Linear systems in (inax,+) algebra , 1990 .

[12]  R. Steele Optimization , 2005 .

[13]  Oleg Viro,et al.  Dequantization of Real Algebraic Geometry on Logarithmic Paper , 2000, math/0005163.

[14]  B. Sturmfels,et al.  Tropical Convexity , 2003, math/0308254.

[15]  I. Singer,et al.  Max-plus convex sets and max-plus semispaces. II , 2007 .

[16]  C. Reutenauer,et al.  Inversion of matrices over a commutative semiring , 1984 .

[17]  P. Erdos,et al.  Studies in Pure Mathematics , 1983 .

[18]  Bernd Sturmfels,et al.  Maximal Minors and Their Leading Terms , 1993 .

[19]  Siegfried Helbig,et al.  On Carathéodory's and Krein-Milman's theorems in fully ordered groups , 1988 .

[20]  G. Mikhalkin Enumerative tropical algebraic geometry in R^2 , 2003, math/0312530.

[21]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[22]  Bernt Lindström A Theorem on Families of Sets , 1972, J. Comb. Theory, Ser. A.

[23]  G. Mikhalkin Enumerative tropical algebraic geometry , 2003 .

[24]  Imre Bárány,et al.  Colourful Linear Programming and its Relatives , 1997, Math. Oper. Res..

[25]  M. G. Delgado,et al.  Optimal control and partial differential equations , 2004 .

[26]  K. S. Sarkaria Tverberg’s theorem via number fields , 1992 .

[27]  J. Quadrat,et al.  Hahn-Banach separation theorem for max-plus semimodules , 2001 .

[28]  I Barany,et al.  A GENERALIZATION OF CARATHEODORYS THEOREM , 1982 .

[29]  H. Tverberg A Generalization of Radon's Theorem , 1966 .

[30]  J. Quadrat,et al.  Duality and separation theorems in idempotent semimodules , 2002, math/0212294.

[31]  Виктор Павлович Маслов,et al.  Идемпотентный функциональный анализ. Алгебраический подход@@@Idempotent Functional Analysis: An Algebraic Approach , 2001 .

[32]  Marianne Akian,et al.  Max-Plus Algebra , 2006 .

[33]  S. Gaubert,et al.  Linear independence over tropical semirings and beyond , 2008, 0812.3496.

[34]  L. Hogben Handbook of Linear Algebra , 2006 .

[35]  S. Gaubert,et al.  Cyclic projectors and separation theorems in idempotent convex geometry , 2007, 0706.3347.