Environmental and cultural stimulants in the production of carotenoids from microorganisms

Commercial production of carotenoids from microorganisms competes mainly with synthetic manufacture by chemical procedures. Efficient stimulation of carotenoid biosynthesis is expected to promote accumulation of carotenoid by microbes. This review describes the variety of environmental and cultural stimulants studied during the last few decades which enhance volumetric production and cellular accumulation of commercially important carotenoids from microalgae, fungi and bacteria. Stimulation of carotenoid production by white-light illumination and temperature fluctuation is discussed along with supplementation of metal ions, salts, organic solvents, preformed precursors and several other chemicals in the culture broth. Reports on the improvements in yield are reviewed and assessed from a biotechnology point of view.

[1]  M. Hedl,et al.  3-Hydroxy-3-methylglutaryl-CoA reductase. , 2000, Methods in enzymology.

[2]  A. P. De Leenheer,et al.  Microbial sources of carotenoid pigments used in foods and feeds , 1991 .

[3]  C. Chichester,et al.  BIOSYNTHESIS OF YEAST CAROTENOIDS , 1964, Journal of bacteriology.

[4]  T. Goodwin Biogeochemistry of Carotenoids , 1980 .

[5]  T. W. Goodwin,et al.  [29] Biosynthesis of carotenoids: An overview , 1993 .

[6]  Lu Fan,et al.  Enhancement and determination of astaxanthin accumulation in green alga Haematococcus pluvialis , 1992 .

[7]  M Nakagawa,et al.  Metabolic engineering for production of beta-carotene and lycopene in Saccharomyces cerevisiae. , 1994, Bioscience, biotechnology, and biochemistry.

[8]  M. Oh,et al.  Directed Evolution of Metabolically Engineered Escherichiacoli for Carotenoid Production , 2000, Biotechnology progress.

[9]  E. Cerdá-Olmedo,et al.  Regulation of Carotene Biosynthesis in Phycomyces by Vitamin A and β‐Ionone , 1974 .

[10]  J. Keasling,et al.  Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production. , 2001, Biotechnology and bioengineering.

[11]  J. Salonen,et al.  Lycopene, Atherosclerosis, and Coronary Heart Disease , 2002, Experimental biology and medicine.

[12]  G. An,et al.  Improved growth of the red yeast, Phaffia rhodozyma (Xanthophyllomyces dendrorhous), in the presence of tricarboxylic acid cycle intermediates , 2001, Biotechnology Letters.

[13]  C. Chichester,et al.  Biosynthesis of carotenoids by Phycomyces blakesleeanus mutants in the presence of nitrogenous heterocyclic compounds , 1973 .

[14]  P. Bhosale,et al.  Production of β-carotene by a mutant of Rhodotorula glutinis , 2001, Applied Microbiology and Biotechnology.

[15]  G. Sandmann Genetic manipulation of carotenoid biosynthesis: strategies, problems and achievements. , 2001, Trends in plant science.

[16]  R Hiller,et al.  Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. Eye Disease Case-Control Study Group. , 1994, JAMA.

[17]  G. Sandmann Novel carotenoids genetically engineered in a heterologous host. , 2003, Chemistry & biology.

[18]  A. Ciegler,et al.  STIMULATION OF CAROTENOGENESIS BY MICROBIAL CELLS. , 1964, Applied microbiology.

[19]  Shiro Nagai,et al.  Hyper-accumulation of astaxanthin in a green algaHaematococcus pluvialis at elevated temperatures , 1994, Biotechnology Letters.

[20]  P. Bhosale,et al.  Manipulation of temperature and illumination conditions for enhanced β‐carotene production by mutant 32 of Rhodotorula glutinis , 2002, Letters in applied microbiology.

[21]  Alexandru T. Balaban,et al.  Stimulation of beta-Carotene Synthesis in Blakeslea trispora by Pyruvate and Intermediates of the Tricarboxylic Acid (TCA) Cycle. , 1969 .

[22]  C. Schmidt-Dannert,et al.  Engineering novel carotenoids in microorganisms. , 2000, Current opinion in biotechnology.

[23]  A. Young,et al.  LOW‐TEMPERATURE‐INDUCED SYNTHESIS OF α‐CAROTENE IN THE MICROALGA DUNALIELLA SALINA (CHLOROPHYTA) , 1999 .

[24]  Frances H. Arnold,et al.  Molecular breeding of carotenoid biosynthetic pathways , 2000, Nature Biotechnology.

[25]  G. Armstrong Genetics of eubacterial carotenoid biosynthesis: a colorful tale. , 1997, Annual review of microbiology.

[26]  G. Britton Biosynthesis of carotenoids , 1993 .

[27]  J. F. Gutiérrez-Corona,et al.  Environmental and developmental regulation of carotenogenesis in the dimorphic fungus Mucor rouxii , 1995, Current Microbiology.

[28]  A. Ben‐Amotz,et al.  Accumulation of metabolites by halotolerant algae and its industrial potential. , 1983, Annual review of microbiology.

[29]  G. An,et al.  Ethanol increases carotenoid production in Phaffia rhodozyma , 1997, Journal of Industrial Microbiology and Biotechnology.

[30]  G. An,et al.  Influence of light on growth and pigmentation of the yeast Phaffia rhodozyma , 1990, Antonie van Leeuwenhoek.

[31]  S. Dandekar,et al.  Chemical regulators of carotenogenesis by Blakeslea trispora , 1980 .

[32]  J. Blumberg,et al.  The Potential Role of Dietary Xanthophylls in Cataract and Age-Related Macular Degeneration , 2000, Journal of the American College of Nutrition.

[33]  M. Kula,et al.  Studies of astaxanthin biosynthesis in Xanthophyllomyces dendrorhous (Phaffia rhodozyma). Effect of inhibitors and low temperature , 1998, Yeast.

[34]  C. Chichester,et al.  Phytoene production in Phycomyces. , 1957, Archives of biochemistry and biophysics.

[35]  Pinhas Margalith,et al.  Enhancement of carotenoid synthesis by fungal metabolites , 1993, Applied Microbiology and Biotechnology.

[36]  Lawrence A. Yannuzzi,et al.  Dietary Carotenoids, Vitamins A, C, and E, and Advanced Age-Related Macular Degeneration , 1994 .

[37]  P Calo,et al.  The yeast Phaffia rhodozyma as an industrial source of astaxanthin. , 1995, Microbiologia.

[38]  A. Ben‐Amotz EFFECT OF LOW TEMPERATURE ON THE STEREOISOMER COMPOSITION OF β‐CAROTENE IN THE HALOTOLERANT ALGA DUNALIELLA BARDAWIL (CHLOROPHYTA) 1 , 1996 .

[39]  Jay D Keasling,et al.  Amplification of HMG-CoA reductase production enhances carotenoid accumulation in Neurospora crassa. , 2002, Metabolic engineering.

[40]  K. Sasaki,et al.  Stimulation of vitamin B12 formation in aerobically-grownRhodopseudomonas gelatinosa under microaerobic condition , 1986, Biotechnology Letters.

[41]  A. Ciegler,et al.  Identification of the Stimulatory Factors in Citrus Molasses for Carotenogenesis in Blakeslea trispora , 1966, Nature.

[42]  C. Hennekens β-Carotene supplementation and cancer prevention , 1997 .

[43]  T. Stukel,et al.  A clinical trial of beta carotene to prevent basal-cell and squamous-cell cancers of the skin. The Skin Cancer Prevention Study Group. , 1990, The New England journal of medicine.

[44]  Yusuf Chisti,et al.  Growth and biochemical characterization of microalgal biomass produced in bubble column and airlift photobioreactors: studies in fed-batch culture , 2002 .

[45]  J. Steinbrenner,et al.  Regulation of two carotenoid biosynthesis genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced astaxanthin formation in the green alga Haematococcus pluvialis. , 2001, Plant physiology.

[46]  Shiro Nagai,et al.  Effects of light intensity, light quality, and illumination cycle on astaxanthin formation in a green alga, Haematococcus pluvialis , 1992 .

[47]  E. Giovannucci,et al.  Tomatoes, Lycopene, and Prostate Cancer , 1998, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[48]  J. Abalde,et al.  Comparison of the accumulation of astaxanthin in Haematococcus pluvialis and other green microalgae under N-starvation and high light conditions , 2001, Biotechnology Letters.

[49]  L. Flores-Cotera,et al.  Citrate, a possible precursor of astaxanthin in Phaffia rhodozyma: influence of varying levels of ammonium, phosphate and citrate in a chemically defined medium. , 2001, Applied Microbiology and Biotechnology.

[50]  G. Sandmann,et al.  The biotechnological potential and design of novel carotenoids by gene combination in Escherichia coli. , 1999, Trends in biotechnology.

[51]  A. Young,et al.  Exposure to Low Irradiances Favors the Synthesis of 9-cis β,β-Carotene in Dunaliella salina (Teod.) , 2000 .

[52]  G. Sandmann Biosynthesis of cyclic carotenoids: Biochemistry and molecular genetics of the reaction sequence , 1991 .

[53]  多田 幹郎 Mechanism of photoregulated carotenogenesis in Rhodotorula minuta , 1983 .

[54]  H. Linden,et al.  Regulation of carotenoid biosynthesis genes in response to light in Chlamydomonas reinhardtii. , 2002, Biochimica et biophysica acta.

[55]  R. L. Ausich Commercial opportunities for carotenoid production by biotechnology , 1997 .

[56]  S. Komemushi,et al.  Activation of torularhodin production by Rhodotorula glutinis using weak white light irradiation. , 2001, Journal of bioscience and bioengineering.

[57]  A. Vonshak,et al.  Astaxanthin Accumulation in the Green Alga Haematococcus pluvialis1 , 1991 .

[58]  V. Modi,et al.  Stimulation of carotenogenesis by penicillin in Blakeslea trispora , 1977 .

[59]  S. Sánchez,et al.  Influence of carbon and nitrogen sources on Flavobacteriumgrowth and zeaxanthin biosynthesis , 1999, Journal of Industrial Microbiology & Biotechnology.

[60]  C. Chichester,et al.  Carotenoid Biosynthesis in Rhodotorula glutinis , 1974, Journal of bacteriology.

[61]  S. Boussiba Carotenogenesis in the green alga Haematococcus pluvialis: Cellular physiology and stress response , 2000 .

[62]  N. Misawa,et al.  Metabolic engineering for the production of carotenoids in non-carotenogenic bacteria and yeasts. , 1998, Journal of biotechnology.

[63]  S. Liaaen-Jensen,et al.  Microbial carotenoids. , 1972, Annual review of microbiology.

[64]  P. Margalith,et al.  Some observations on the carotenogenesis in the yeast Rhodotorula mucilaginosa , 1968 .

[65]  A. Ben‐Amotz,et al.  Are active oxygen species involved in induction of β-carotene in Dunaliella bardawil? , 1993, Planta.

[66]  J. D. del Campo,et al.  Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). , 2000, Journal of biotechnology.

[67]  L. Ninet,et al.  Activation of the biosynthesis of carotenoids by Blakeslea trispora , 1969 .

[68]  J. Keasling,et al.  Engineering a mevalonate pathway in Escherichia coli for production of terpenoids , 2003, Nature Biotechnology.

[69]  M. Tada [24] Methods for investigating photoregulated carotenogenesis , 1993 .

[70]  G. Sandmann,et al.  Carotenoid biosynthesis and biotechnological application. , 2001, Archives of biochemistry and biophysics.

[71]  J. C. Preez,et al.  Photo-Regulated Astaxanthin Production by Phaffia rhodozyma Mutants , 1994 .

[72]  D. Chaumont,et al.  Carotenoid content in growing cells of Haematococcus pluvialis during a sunlight cycle , 1995, Journal of Applied Phycology.

[73]  H. Hoogendoorn,et al.  Uptake of oxygen, release and degradation of hydrogen peroxide by Streptococcus mutans NCTC 10449 , 1990, Antonie van Leeuwenhoek.

[74]  G. Kikuchi,et al.  Synthesis of Bacteriochlorophyll by Rhodopseudomonas Spheroides Under Dark-Aerobic Conditions , 1963, Nature.

[75]  E. Cerdá-Olmedo,et al.  Förderung und Hemmung der Carotinsynthese bei Phycomyces durch Aromaten , 1986 .

[76]  A. Hiraishi,et al.  Chloroflexus aggregans sp. nov., a filamentous phototrophic bacterium which forms dense cell aggregates by active gliding movement. , 1995, International journal of systematic bacteriology.

[77]  M. Sporn,et al.  Can dietary beta-carotene materially reduce human cancer rates? , 1981, Nature.

[78]  V. Modi,et al.  Stimulation of carotenogenesis in Blakeslea trispora by cupric ions , 1982 .

[79]  D. Bryant,et al.  Growth at low temperature causes nitrogen limitation in the cyanobacterium Synechococcus sp. PCC 7002 , 1997, Archives of Microbiology.

[80]  W. Stahl,et al.  Lycopene: a biologically important carotenoid for humans? , 1996, Archives of biochemistry and biophysics.

[81]  Yuan-Kun Lee,et al.  Secondary carotenoids formation by the green alga Chlorococcum sp. , 2000, Journal of Applied Phycology.

[82]  Bhosale Pb,et al.  Production of β-carotene by a mutant of Rhodotorula glutinis , 2001 .

[83]  A. Ben‐Amotz,et al.  The effect of veratrole on carotenoid biosynthesis by Phycomyces blakesleeanus , 1991 .

[84]  C. Schmidt-Dannert,et al.  Metabolic engineering towards biotechnological production of carotenoids in microorganisms , 2002, Applied Microbiology and Biotechnology.

[85]  Wan-Jean Hsu,et al.  Chemical bioregulation of carotenogenesis in phycomyces blakesleeanus , 1990 .

[86]  E. Feofilova,et al.  Regulation of lycopene biosynthesis in the mucorous fungus Blakeslea trispora by pyridine derivatives , 1995 .

[87]  E. Cerdá-Olmedo,et al.  Sexual Activation of Carotenogenesis in Phycomyces blakesleeanus , 1986 .